Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 1 )

2019 ( 117 )

2018 ( 488 )

2017 ( 491 )

Custom range...

Search Results: 1 - 10 of 53162 matches for " Hye-Sun Lee "
All listed articles are free for downloading (OA Articles)
Page 1 /53162
Display every page Item
Protective Effects of the Traditional Herbal Formula Oryeongsan Water Extract on Ethanol-Induced Acute Gastric Mucosal Injury in Rats
Woo-Young Jeon,Mee-Young Lee,In-Sik Shin,Hye-Sun Lim,Hyeun-Kyoo Shin
Evidence-Based Complementary and Alternative Medicine , 2012, DOI: 10.1155/2012/438191
Abstract: This study was performed to evaluate the protective effect and safety of Oryeongsan water extract (OSWE) on ethanol-induced acute gastric mucosal injury and an acute toxicity study in rats. Acute gastric lesions were induced via intragastric oral administration of absolute ethanol at a dose of 5 mL/kg. OSWE (100 and 200 mg/kg) was administered to rats 2 h prior to the oral administration of absolute ethanol. The stomach of animal models was opened and gastric mucosal lesions were examined. Gastric mucosal injuries were evaluated by measuring the levels of malondialdehyde (MDA), glutathione (GSH), and the activity of antioxidant enzymes. In the acute toxicity study, no adverse effects of OSWE were observed at doses up to 2000 mg/kg/day. Administration of OSWE reduced the damage by conditioning the gastric mucosa against ethanol-induced acute gastric injury, which included hemorrhage, hyperemia, and loss of epithelial cells. The level of MDA was reduced in OSWE-treated groups compared with the ethanol-induced group. Moreover, the level of GSH and the activity of antioxidant enzymes were significantly increased in the OSWE-treated groups. Our findings suggest that OSWE has a protective effect on the gastric mucosa against ethanol-induced acute gastric injury via the upregulation of antioxidant enzymes.
Effect of Alpinia katsumadai Hayata on House Dust Mite-Induced Atopic Dermatitis in NC/Nga Mice
Hye-Sun Lim,Chang-Seob Seo,Hyekyung Ha,Hoyoung Lee,Jun Kyung Lee,Mee-Young Lee,HyeunKyoo Shin
Evidence-Based Complementary and Alternative Medicine , 2012, DOI: 10.1155/2012/705167
Abstract: We evaluated the effects of Alpinia katsumadai Hayata (AKH, Zingiberaceae) extract on the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 cells, thymus- and-activation-regulated chemokine (TARC/CCL17) in HaCaT cells, and histamine level in HMC-1 cells. In an in vivo experiment, atopic dermatitis was induced by topical application of house dust mites for 4 weeks, and the protective effects of AKH was investigated by measuring the severity of the skin reaction on the back and ears, and plasma levels of immunoglobulin E (IgE) and histamine. AKH extract suppressed the production of NO and PGE2 in RAW 264.7 cells, TARC in HaCaT cells, and histamine in HMC-1 cells in a dose-dependent manner. In in vivo experiments, the severity of dermatitis, including erythema/hemorrhage, edema, erosion and scaling, and plasma levels of IgE, and histamine were lower in NC/Nga mice with atopic dermatitis, treated with AKH extract than in untreated mice. AKH extract reduced the histological manifestations of atopic dermatitis-like skin lesions such as erosion, hyperplasia of the epidermis and dermis, and inflammatory cell infiltration on the skin of the back and ear. These results suggest that AKH inhibits the development of house dust mite-induced atopic dermatitis in NC/Nga mice.
Combined Impact of Cardiorespiratory Fitness and Visceral Adiposity on Metabolic Syndrome in Overweight and Obese Adults in Korea
Sue Kim, Ji-Young Kim, Duk-Chul Lee, Hye-Sun Lee, Ji-Won Lee, Justin Y. Jeon
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0085742
Abstract: Background Obesity, especially visceral obesity, is known to be an important correlate for cardiovascular disease and increased mortality. On the other hand, high cardiorespiratory fitness is suggested to be an effective contributor for reducing this risk. This study was conducted to determine the combined impact of cardiorespiratory fitness and visceral adiposity, otherwise known as fitness and fatness, on metabolic syndrome in overweight and obese adults. Methods A total of 232 overweight and obese individuals were grouped into four subtypes according to their fitness level. This was measured by recovery heart rate from a step test in addition to visceral adiposity defined as the visceral adipose tissue area to subcutaneous adipose tissue area ratio (VAT/SAT ratio). Associations of fitness and visceral fatness were analyzed in comparison with the prevalence of metabolic syndrome. Results The high visceral fat and low fitness group had the highest prevalence of metabolic syndrome [Odds Ratio (OR) 5.02; 95% Confidence Interval (CI) 1.85–13.61] compared with the reference group, which was the low visceral adiposity and high fitness group, after adjustments for confounding factors. Viscerally lean but unfit subjects were associated with a higher prevalence of metabolic syndrome than more viscerally obese but fit subjects (OR 3.42; 95% CI 1.27–9.19, and OR 2.70; 95% CI 1.01–7.25, respectively). Conclusions Our study shows that visceral obesity and fitness levels are cumulatively associated with a higher prevalence of metabolic syndrome in healthy overweight and obese adults. This suggests that cardiorespiratory fitness is a significant modifier in the relation of visceral adiposity to adverse metabolic outcomes in overweight and obese individuals.
Identification of Candidate Genes related to Bovine Marbling using Protein-Protein Interaction Networks
Dajeong Lim, Nam-Kuk Kim, Hye-Sun Park, Seung-Hwan Lee, Yong-Min Cho, Sung Jong Oh, Tae-Hun Kim, Heebal Kim
International Journal of Biological Sciences , 2011,
Abstract: Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The present study systemically analyzed genes associated with bovine marbling score and identified their relationships. The candidate nodes were obtained using MedScan text-mining tools and linked by protein-protein interaction (PPI) from the Human Protein Reference Database (HPRD). To determine key node of marbling, the degree and betweenness centrality (BC) were used. The hub nodes and biological pathways of our network are consistent with the previous reports about marbling traits, and also suggest unknown candidate genes associated with intramuscular fat. Five nodes were identified as hub genes, which was consistent with the network analysis using quantitative reverse-transcription PCR (qRT-PCR). Key nodes of the PPI network have positive roles (PPARγ, C/EBPα, and RUNX1T1) and negative roles (RXRA, CAMK2A) in the development of intramuscular fat by several adipogenesis-related pathways. This study provides genetic information for identifying candidate genes for the marbling trait in bovine.
Epigenetic Changes of Lentiviral Transgenes in Porcine Stem Cells Derived from Embryonic Origin
Kwang-Hwan Choi, Jin-Kyu Park, Hye-Sun Kim, Kyung-Jun Uh, Dong-Chan Son, Chang-Kyu Lee
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0072184
Abstract: Because of the physiological and immunological similarities that exist between pigs and humans, porcine pluripotent cell lines have been identified as important candidates for preliminary studies on human disease as well as a source for generating transgenic animals. Therefore, the establishment and characterization of porcine embryonic stem cells (pESCs), along with the generation of stable transgenic cell lines, is essential. In this study, we attempted to efficiently introduce transgenes into Epiblast stem cell (EpiSC)-like pESCs. Consequently, a pluripotent cell line could be derived from a porcine-hatched blastocyst. Enhanced green fluorescent protein (EGFP) was successfully introduced into the cells via lentiviral vectors under various multiplicities of infection, with pluripotency and differentiation potential unaffected after transfection. However, EGFP expression gradually declined during extended culture. This silencing effect was recovered by in vitro differentiation and treatment with 5-azadeoxycytidine. This phenomenon was related to DNA methylation as determined by bisulfite sequencing. In conclusion, we were able to successfully derive EpiSC-like pESCs and introduce transgenes into these cells using lentiviral vectors. This cell line could potentially be used as a donor cell source for transgenic pigs and may be a useful tool for studies involving EpiSC-like pESCs as well as aid in the understanding of the epigenetic regulation of transgenes.
Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome
Hyun-Jin Kim, Kwang-Hyun Baek, Seung-Won Lee, JungEun Kim, Bong-Woo Lee, Hye-Sun Cho, Woo Taek Kim, Doil Choi, Cheol-Goo Hur
BMC Plant Biology , 2008, DOI: 10.1186/1471-2229-8-101
Abstract: We built the Pepper EST database to mine the complexity of chili pepper ESTs. The database was built on 122,582 sequenced ESTs and 116,412 refined ESTs from 21 pepper EST libraries. The ESTs were clustered and assembled into virtual consensus cDNAs and the cDNAs were assigned to metabolic pathway, Gene Ontology (GO), and MIPS Functional Catalogue (FunCat). The Pepper EST database is designed to provide a workbench for (i) identifying unigenes in pepper plants, (ii) analyzing expression patterns in different developmental tissues and under conditions of stress, and (iii) comparing the ESTs with those of other members of the Solanaceae family. The Pepper EST database is freely available at http://genepool.kribb.re.kr/pepper/ webcite.The Pepper EST database is expected to provide a high-quality resource, which will contribute to gaining a systemic understanding of plant diseases and facilitate genetics-based population studies. The database is also expected to contribute to analysis of gene synteny as part of the chili pepper sequencing project by mapping ESTs to the genome.Pepper is a member of the family Solanaceae, which is one of the largest families in the plant kingdom and includes more than 3,000 species [1]. The Solanaceae family includes important crops, such as pepper, tomato, tobacco, potato, and eggplant and has been highly cultivated over the years for human nutrition and health. Capsicum species are consumed worldwide and are valued because of their unique color, pungency, and aroma. Capsicum peppers include C. annuum, C. chinense, C. baccatum, C. frutescens, and C. pubescens and are cultivated in different parts of the world. Of these, the varieties of the chili pepper plant species C. annuum, having a modest-sized diploid genome (2n = 24), are the most heavily consumed due to their nutritional value and spicy taste [2]. The chemical that is primarily responsible for the pungency of C. annuum has been identified as capsaicin [3], which elicits numerous b
Biphasic Electrical Currents Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem Cells
Keun-A Chang,Jin Won Kim,Jeong a. Kim,Sungeun Lee,Saeromi Kim,Won Hyuk Suh,Hye-Sun Kim,Sunghoon Kwon,Sung June Kim,Yoo-Hun Suh
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0018738
Abstract: The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control - however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs) significantly increased the proliferation of fetal neural stem cells (NSCs). Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.
Phloroglucinol Attenuates Motor Functional Deficits in an Animal Model of Parkinson's Disease by Enhancing Nrf2 Activity
Junghwa Ryu, Rui Zhang, Bo-Hyun Hong, Eun-Jung Yang, Kyoung Ah Kang, Moonseok Choi, Ki Cheon Kim, Su-Jin Noh, Hee Soo Kim, Nam-Ho Lee, Jin Won Hyun, Hye-Sun Kim
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0071178
Abstract: In this study, we investigated whether phloroglucinol (1, 3, 5 - trihydroxybenzene) has therapeutic effects in cellular and animal model of Parkinson's disease (PD). PD is the second most common, chronic and progressive neurodegenerative disease, and is clinically characterized with motor dysfunctions such as bradykinesia, rigidity, postural instability, gait impairment, and resting tremor. In the brains of PD patients, dopaminergic neuronal loss is observed in the Substantia nigra. Although the exact mechanisms underlying PD are largely unknown, mitochondrial dysfunction and oxidative stress are thought to be critical factors that induce the onset of the disease. Here, phloroglucinol administration was shown to attenuate motor functional deficits evaluated with rota-rod and apomorphine-induced rotation tests in 6-hydroxydopamine (6-OHDA)-induced PD animal models. Moreover, phloroglucinol ameliorated the loss of synapses as assessed with protein levels and immunoreactivity against synaptophysin in the midbrain region of the 6-OHDA-lesioned rats. In addition, in SH-SY5Y cultures, the cytotoxicity of 6-OHDA was reduced by pre-treatment with phloroglucinol. The increase in the reactive oxygen species, lipid peroxidation, protein carbonyl formation and 8-hydroxyguanine caused by treatment with 6-OHDA was attenuated by phloroglucinol in SH-SY5Y cells. Furthermore, phloroglucinol treatment rescued the reduced levels of nuclear Nrf2, antioxidant enzymes, i.e., catalase and glutathione peroxidase, in 6-OHDA-treated cells. Taken together, phloroglucinol has a therapeutic potential for treatment of PD.
The first generation of a BAC-based physical map of Brassica rapa
Jeong-Hwan Mun, Soo-Jin Kwon, Tae-Jin Yang, Hye-Sun Kim, Beom-Soon Choi, Seunghoon Baek, Jung Kim, Mina Jin, Jin A Kim, Myung-Ho Lim, Soo Lee, Ho-Il Kim, Hyungtae Kim, Yong Lim, Beom-Seok Park
BMC Genomics , 2008, DOI: 10.1186/1471-2164-9-280
Abstract: A genome-wide physical map of the B. rapa genome was constructed by the capillary electrophoresis-based fingerprinting of 67,468 Bacterial Artificial Chromosome (BAC) clones using the five restriction enzyme SNaPshot technique. The clones were assembled into contigs by means of FPC v8.5.3. After contig validation and manual editing, the resulting contig assembly consists of 1,428 contigs and is estimated to span 717 Mb in physical length. This map provides 242 anchored contigs on 10 linkage groups to be served as seed points from which to continue bidirectional chromosome extension for genome sequencing.The map reported here is the first physical map for Brassica "A" genome based on the High Information Content Fingerprinting (HICF) technique. This physical map will serve as a fundamental genomic resource for accelerating genome sequencing, assembly of BAC sequences, and comparative genomics between Brassica genomes. The current build of the B. rapa physical map is available at the B. rapa Genome Project website for the user community.The genus Brassica is one of the most important vegetable crop genera in the world because it contributes to human diet, condiments, animal feed, forage, and edible or industrial oil. Many cultivated species of Brassica are also increasingly recognized as good sources of healthy metabolites such as vitamin C, soluble fiber, and multiple anti-cancer glucosinolate compounds including diindolylmethane and sulforaphane [1]. In addition, current emphasis on rapeseed oil as a biofuel or a renewable resource for industry worldwide makes Brassica a good target of metabolic engineering.The close phylogenetic relationship between the Brassica species and model plant Arabidopsis thaliana predicts that the knowledge transfer from Arabidopsis for Brassica crop improvement would be straightforward. However, the complex genome organization of the Brassica species as a result of multiple rounds of polyploidy and genome hybridization makes the identifi
Inulae Flos and Its Compounds Inhibit TNF-α- and IFN-γ-Induced Chemokine Production in HaCaT Human Keratinocytes
Jung-Hoon Kim,Hye-Sun Lim,Hyekyung Ha,Chang-Seob Seo,Hyeun-Kyoo Shin
Evidence-Based Complementary and Alternative Medicine , 2012, DOI: 10.1155/2012/280351
Abstract: The present study is to investigate which kinds of solvent extracts of Inulae Flos inhibit the chemokine productions in HaCaT cell and whether the inhibitory capacity of Inulae Flos is related with constitutional compounds. The 70% methanol extract showed comparatively higher inhibition of thymus and activation-regulated chemokine (TARC/CCL17) in HaCaT cells, therefore this extract was further partitioned with n-hexane, chloroform, ethyl acetate, butanol, and water. The ethyl acetate fraction inhibited TARC, macrophage-derived chemokine (MDC/CCL22), and regulated on activation of normal T-cell-expressed and -secreted (RANTES/CCL5) production in HaCaT cells better than the other fractions. The compounds of Inulae Flos, such as 1,5-dicaffeoylquinic acid and luteolin, inhibited TARC, MDC, and RANTES production in HaCaT cells. 1,5-Dicaffeoylquinic acid was contained at the highest concentrations both in the 70% methanol extract and ethyl acetate fraction and inhibited the secretion of chemokines dose-dependently more than the other compounds. Luteolin also represented dose-dependent inhibition on chemokine productions although it was contained at lower levels in 70% methanol extract and solvent fractions. These results suggest that the inhibitory effects of Inulae Flos on chemokine production in HaCaT cell could be related with constituent compounds contained, especially 1,5-dicaffeoylquinic acid and luteolin.
Page 1 /53162
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.