oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 20 )

2018 ( 31 )

2017 ( 21 )

2016 ( 42 )

Custom range...

Search Results: 1 - 10 of 9889 matches for " Hwa-Young Son "
All listed articles are free for downloading (OA Articles)
Page 1 /9889
Display every page Item
The Effects of Propionate and Valerate on Insulin Responsiveness for Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myotubes via G Protein-Coupled Receptor 41
Joo-Hui Han, In-Su Kim, Sang-Hyuk Jung, Sang-Gil Lee, Hwa-Young Son, Chang-Seon Myung
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0095268
Abstract: Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 μM propionic acid or 500 μM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes.
Different Catalytic Mechanisms in Mammalian Selenocysteine- and Cysteine-Containing Methionine-R-Sulfoxide Reductases
Hwa-Young Kim,Vadim N. Gladyshev
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.0030375
Abstract: Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties.
Alternative first exon splicing regulates subcellular distribution of methionine sulfoxide reductases
Hwa-Young Kim, Vadim N Gladyshev
BMC Molecular Biology , 2006, DOI: 10.1186/1471-2199-7-11
Abstract: In the present study, we identified and characterized alternatively spliced forms of mammalian MsrA. In addition to the previously known variant containing an N-terminal mitochondrial signal peptide and distributed between mitochondria and cytosol, a second mouse and human form was detected in silico. This form, MsrA(S), was generated using an alternative first exon. MsrA(S) was enzymatically active and was present in cytosol and nucleus in transfected cells, but occurred below detection limits in tested mouse tissues. The third alternative form lacked the active site and could not be functional. In addition, we found that mitochondrial and cytosolic forms of both MsrA and MsrB in Drosophila could be generated by alternative first exon splicing.Our data suggest conservation of alternative splicing to regulate subcellular distribution of methionine sulfoxide reductases.The sulfur atom of methionine residues is susceptible to oxidation by reactive oxygen species. Oxidation of methionines may affect protein structure and function and has been implicated in various processes, such as oxidative stress, accelerated aging, and neurodegenerative diseases (reviewed in [1-6]). This oxidation generates a diastereomeric mixture of methionine-S-sulfoxide and methionine-R-sulfoxide. In contrast to irreversible protein oxidation, such as carbonylation, methionine sulfoxide can be reversibly reduced back to methionine by repair enzymes, methionine sulfoxide reductases. There are two known classes of these enzymes: MsrA (methionine-S-sulfoxide reductase) and MsrB (methionine-R-sulfoxide reductase). Although the catalytic mechanisms for MsrA and MsrB are similar, these enzymes have different folds.Most organisms from bacteria to humans encode MsrA and MsrB genes in their genomes, however, some hyperthermophiles lack MsrA, MsrB, or both genes [7]. MsrA and MsrB genes in several bacterial species are clustered with each other and appear to form an operon. In addition, MsrA and MsrB pro
Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases.
Kim Hwa-Young,Gladyshev Vadim N
PLOS Biology , 2005,
Abstract: Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties.
Different Catalytic Mechanisms in Mammalian Selenocysteine- and Cysteine-Containing Methionine-R-Sulfoxide Reductases
Hwa-Young Kim,Vadim N Gladyshev
PLOS Biology , 2005, DOI: 10.1371/journal.pbio.0030375
Abstract: Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties.
Mucosal Vaccination with Recombinant Lactobacillus casei-Displayed CTA1-Conjugated Consensus Matrix Protein-2 (sM2) Induces Broad Protection against Divergent Influenza Subtypes in BALB/c Mice
Mohammed Y. E. Chowdhury, Rui Li, Jae-Hoon Kim, Min-Eun Park, Tae-Hwan Kim, Prabuddha Pathinayake, Prasanna Weeratunga, Man Ki Song, Hwa-Young Son, Seung-Pyo Hong, Moon-Hee Sung, Jong-Soo Lee, Chul-Joong Kim
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0094051
Abstract: To develop a safe and effective mucosal vaccine against pathogenic influenza viruses, we constructed recombinant Lactobacillus casei strains that express conserved matrix protein 2 with (pgsA-CTA1-sM2/L. casei) or without (pgsA-sM2/L. casei) cholera toxin subunit A1 (CTA1) on the surface. The surface localization of the fusion protein was verified by cellular fractionation analyses, flow cytometry and immunofluorescence microscopy. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA. However, the conjugation of cholera toxin subunit A1 induced more potent mucosal, humoral and cell-mediated immune responses. In a challenge test with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird /Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant pgsA-CTA1-sM2/L. casei provided better protection against lethal challenges than pgsA-sM2/L. casei, pgsA/L. casei and PBS in mice. These results indicate that mucosal immunization with recombinant L. casei expressing CTA1-conjugated sM2 protein on its surface is an effective means of eliciting protective immune responses against diverse influenza subtypes.
Canine mesenchymal stem cells are effectively labeled with silica nanoparticles and unambiguously visualized in highly autofluorescent tissues
Sei-Myoung Han, Hee-Woo Lee, Dong-Ha Bhang, Kyoung-Won Seo, Hwa-Young Youn
BMC Veterinary Research , 2012, DOI: 10.1186/1746-6148-8-145
Abstract: We examined the effect of silica nanoparticle labeling on stem cell morphology, viability and differentiation as compared with those of unlabeled control cells. After 4?h of incubation with silica nanoparticles, they were internalized by canine MSCs without a change in the morphology of cells compared with that of control cells. The viability and proliferation of MSCs labeled with silica nanoparticles were evaluated by a WST-1 assay and trypan blue exclusion. No effects on cell viability were observed, and the proliferation of canine MSCs was not inhibited during culture with silica nanoparticles. Furthermore, adipogenic and osteogenic differentiation of silica nanoparticle-labeled canine MSCs was at a similar level compared with that of unlabeled cells, indicating that silica nanoparticle labeling did not alter the differentiation capacity of canine MSCs. Silica nanoparticle-labeled canine MSCs were injected into the kidneys of BALB/c mice after celiotomy, and then the mice were sacrificed after 2 or 3?weeks. The localization of injected MSCs was closely examined in highly autofluorescent renal tissues. Histologically, canine MSCs were uniformly and completely labeled with silica nanoparticles, and were unambiguously imaged in histological sections.The results of the current study showed that silica nanoparticles are useful as an effective labeling marker for MSCs, which can elucidate the distribution and fate of transplanted MSCs.Adult mesenchymal stem cells (MSCs) are a cellular tool with promising application in both veterinary and human medicine. MSCs have the potential to repair tissues [1-4] and improve the function of damaged organs. Thus, many clinical trials are in progress to evaluate the therapeutic potentials of MSCs for treating renal failure, diabetes mellitus and heart failure [5-9].Tracking of stem cells is essential for evaluating cell replacement and therapeutic strategies [10]. In addition, long-term labeling of stem cells is critical to elucidat
Eucommia ulmoides Cortex, Geniposide and Aucubin Regulate Lipotoxicity through the Inhibition of Lysosomal BAX
Geum-Hwa Lee, Mi-Rin Lee, Hwa-Young Lee, Seung Hyun Kim, Hye-Kyung Kim, Hyung-Ryong Kim, Han-Jung Chae
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0088017
Abstract: In this study we examined the inhibition of hepatic dyslipidemia by Eucommia ulmoides extract (EUE). Using a screening assay for BAX inhibition we determined that EUE regulates BAX-induced cell death. Among various cell death stimuli tested EUE regulated palmitate-induced cell death, which involves lysosomal BAX translocation. EUE rescued palmitate-induced inhibition of lysosomal V-ATPase, α-galactosidase, α-mannosidase, and acid phosphatase, and this effect was reversed by bafilomycin, a lysosomal V-ATPase inhibitor. The active components of EUE, aucubin and geniposide, showed similar inhibition of palmitate-induced cell death to that of EUE through enhancement of lysosome activity. Consistent with these in vitro findings, EUE inhibited the dyslipidemic condition in a high-fat diet animal model by regulating the lysosomal localization of BAX. This study demonstrates that EUE regulates lipotoxicity through a novel mechanism of enhanced lysosomal activity leading to the regulation of lysosomal BAX activation and cell death. Our findings further indicate that geniposide and aucubin, active components of EUE, may be therapeutic candidates for non-alcoholic fatty liver disease.
Gene expression profile of the skin in the 'hairpoor' (HrHp) mice by microarray analysis
Bong-Kyu Kim, In-Cheol Baek, Hwa-Young Lee, Jeong-Ki Kim, Hae-Hiang Song, Sungjoo K Yoon
BMC Genomics , 2010, DOI: 10.1186/1471-2164-11-640
Abstract: From 45,282 mouse probes, differential expressions in 43 (>2-fold), 306 (>1.5-fold), and 1861 genes (>1.2-fold) in skin from HrHp/HrHp mice were discovered and compared with skin from wild-type mice. Among the 1861 genes with a > 1.2-fold increase in expression, further analysis showed that the expression of eight genes known to have a close relationship with hair follicle development, ascertained by conducting real-time PCR on skin RNA produced during hair follicle morphogenesis (P0-P14), indicated that four genes, Wif1, Casp14, Krt71, and Sfrp1, showed a consistent expression pattern with respect to HR overexpression in vivo.Wif1 and Casp14 were found to be upregulated, whereas Krt71 and Sfrp1 were downregulated in cells overexpressing HR in transient transfection experiments on keratinocytes, suggesting that HR may transcriptionally regulate these genes. Further studies are required to understand the mechanism of this regulation by the HR cofactor.With a complex and dynamic structure, hair is generated by hair-producing follicles and has a patterned cycle of growth and remodeling, which consists of growth (anagen), regression (catagen), and rest (telogen) stages. There are many genes involved in mature hair follicle (HF) regulation [1].One of these genes, hairless (Hr), is expressed in skin, specifically in the suprabasal cell layer of the interfollicular epidermis and in the lower portion of the HF epithelium; its expression is dependent on the hair cycle. Hr encodes a 130 kDa protein (HR), which contains a zinc finger domain and is localized in the nucleus [2], and acts as a transcriptional corepressor that regulates transcription through directly binding to the thyroid hormone receptor [3,4], vitamin D receptor [5], and retinoic acid-like orphan receptor α [6].Various Hr mutant mice have been studied to understand the function of HR, and most Hr mutant mice are created by causing the loss of HR function in their cells, giving them a typical phenotype with a re
Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation
Hwa-Young Lee, Geum-Hwa Lee, Mi-Rin Lee, Hye-Kyung Kim, Nan-young Kim, Seung-Hyun Kim, Yong-Chul Lee, Hyung-Ryong Kim, Han-Jung Chae
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0081349
Abstract: Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia.
Page 1 /9889
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.