Home OALib Journal OALib PrePrints Submit Ranking News My Lib FAQ About Us Follow Us+
 Title Keywords Abstract Author All

Publish in OALib Journal

ISSN: 2333-9721

APC: Only \$99

Submit

2019 ( 1 )

2018 ( 51 )

2017 ( 45 )

2016 ( 50 )

Search Results: 1 - 10 of 2262 matches for " Drazin逆 "
 Page 1 /2262 Display every page 5 10 20 Item
 计算数学 , 2009, Abstract: In this paper, we study the Drazin inverse and the group inverse in terms of subdeterminants over commutative rings. the single element representations and explicit formulas of the Group inverse and the Drazin inverse are given in terms of subdeterminants over commutative rings.
 作者,杜娟,王华 - , 2018, Abstract: 本文研究了两个有界线性算子和的Drazin逆的问题.利用算子的预解式展开的方法，得到了（P+Q）D的具体表达式，并将其应用到四分块算子矩阵M=[CADB]的Drazin逆上，推广了文献[14，15]的结果.In this paper, we investigate the Drazin inverse for the sum of two bounded linear operators. Using the resolvent expansion of the operator, the explicit representation of the Drazin inverse (P+Q)D is given. Then, we apply our results to the Drazin inverse of the operator matrix M=[CADB], which generalize the results in [14, 15]
 四川师范大学学报(自然科学版) , 2013, Abstract: 研究Banach空间上算子P±Q在给定条件下的Drazin逆，并给出相关的一些具体表示.
 数学物理学报(A辑) , 2009, Abstract: Let C be an additive category. Suppose that φ and η: X→ X are two morphisms of C. If φ and η have the Drazin inverses such that φη=0, then φ+η has the Drazin inverse. If φ has the Drazin inverse φD such that 1X+φDη is invertible. We study the Drazin inverse (resp. group inverse) of f =φ+η and give the necessary and sufficient condition for fD(resp. f #}=(1X+φDη)-1φD. Finally, we extend the Huylebrouck's result from the group inverse to the Drazin inverse.
 内蒙古大学学报(自然科学版) , 2015, DOI: 10.13484/j.nmgdxxbzk.20150404 Abstract: 借助空间分解,得到了在满足条件pqp=p时,无穷维hilbert空间中的正交投影算子p和幂等算子q的线性组合mp+nq的w-加权drazin可逆性及其w-加权drazin逆的表达式.
 计算数学 , 2009, Abstract: 本文应用子式讨论交换环上矩阵的Drazin逆和群逆,给出了矩阵A的Drazin逆和群逆的整体和单个元素的表达式.？
 - , 2017, DOI: 10.6040/j.issn.1671-9352.0.2017.094 Abstract: 摘要： 研究2×2阶反三角矩阵M=(a db 0)的伪Drazin逆M？的计算,另外得到了三种特殊情况下求解M？的方法。Abstract: We give formulae for the pseudo Drazin inverse M？ of an 2×2 anti-triangular matrix M=(a db 0)under some conditions. Moreover, some particular cases of these results are also considered
 - , 2018, Abstract: 利用幂等矩阵的性质及Drazin逆的定义， 证明了两个不同的非零幂等矩阵P，Q的线性组合aP＋bQ(其中a，b∈，a，b≠0)在条件mP＝m下存在Drazin逆， 并且给出其Drazin 逆的计算公式.
 - , 2017, DOI: 10.3969/j.issn.1001-0505.2017.03.034 Abstract: 在条件ab=φ(ba)下,研究了ab与a+b的伪Drazin逆的表达式. 其中, a,b是Banach代数A中的2个伪Drazin可逆的元素,φ是A上双射的centralizer.证明了:若a,b是伪Drazin可逆的且ab=φ(ba), 则ab是伪Drazin可逆的且(ab)?=b?a?; a+b是伪Drazin可逆的,当且仅当aa?(a+b)是伪Drazin可逆的,当且仅当aa?(a+b)bb?是伪Drazin可逆的. 此时,(a+b)?=(aa?(a+b))?+∑∞n=0φ-(n(n+1))/2(0121)(b?)n+1(-a)n(11-aa?).Let a,b be two pseudo Drazin invertible elements in a Banach algebra A. The expressions of the pseudo Drazin inverse of ab and a+b are studied under the condition ab=φ(ba), where φ is a bijective centralizer on A. It is proved that if a,b∈A are pseudo Drazin invertible and ab=φ(ba), then ab is pseudo Drazin invertible with (ab)?=b?a?; a+b is pseudo Drazin invertible if and only if aa?(a+b) is pseudo Drazin invertible if and only if aa?(a+b)bb? is pseudo Drazin invertible. In this case, (a+b)?=(aa?(a+b))?+∑∞n=0φ-(n(n+1))/2(0121)(b?)n+1(-a)n(11-aa?)
 哈尔滨工程大学学报 , 2012, DOI: 10.3969/j.issn.1006-7043.201103079 Abstract: 分块矩阵的Drazin 逆不仅在矩阵理论上被广泛研究而且在自动控制、广义系统、概率统计等方面有重要的应用.本文给出了当广义Schur补S = D ? CADB 可逆时，分块矩阵M=[A B C D ]∈ Cmxn ( A,D 是方阵)在满足下列条件之一时的Drazin逆表示：1）BCAπ = O ，BDCAπ = O ，D2CAπ = O ；2）CAπ A2 = O，CAπ BC = O， CAπ BD = O，CAπ AB = O .这些结果推广了文献[9-10,12]的结论.
 Page 1 /2262 Display every page 5 10 20 Item