Abstract:
Given a finite set of linearly independent quantum states, an observer who examines a single quantum system may sometimes identify its state with certainty. However, unless these quantum states are orthogonal, there is a finite probability of failure. A complete solution is given to the problem of optimal distinction of three states, having arbitrary prior probabilities and arbitrary detection values. A generalization to more than three states is outlined.

Abstract:
An area-preserving map of the unit sphere, consisting of alternating twists and turns, is mostly chaotic. A Liouville density on that sphere is specified by means of its expansion into spherical harmonics. That expansion initially necessitates only a finite number of basis functions. As the dynamical mapping proceeds, it is found that the number of non-negligible coefficients increases exponentially with the number of steps. This is to be contrasted with the behavior of a Schr\"odinger wave function which requires, for the analogous quantum system, a basis of fixed size.

Abstract:
Generalized quantum measurements with N distinct outcomes are used for determining the density matrix, of order d, of an ensemble of quantum systems. The resulting probabilities are represented by a point in an N-dimensional space. It is shown that this point lies in a convex domain having at most d^2-1 dimensions.

Abstract:
A hybrid formalism is proposed for interacting classical and quantum sytems. This formalism is mathematically consistent and reduces to standard classical and quantum mechanics in the case of no interaction. However, in the presence of interaction, the correspondence principle is violated.

Abstract:
Relativistic effects affect nearly all notions of quantum information theory. The vacuum behaves as a noisy channel, even if the detectors are perfect. The standard definition of a reduced density matrix fails for photon polarization because the transversality condition behaves like a superselection rule. We can however define an effective reduced density matrix which corresponds to a restricted class of positive operator-valued measures. There are no pure photon qubits, and no exactly orthogonal qubit states. Reduced density matrices for the spin of massive particles are well-defined, but are not covariant under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning. The distinguishability of quantum signals and their entanglement depend on the relative motion of observers.

Abstract:
Quantum mechanics, information theory, and relativity theory are the basic foundations of theoretical physics. The acquisition of information from a quantum system is the interface of classical and quantum physics. Essential tools for its description are Kraus matrices and positive operator valued measures (POVMs). Special relativity imposes severe restrictions on the transfer of information between distant systems. Quantum entropy is not a Lorentz covariant concept. Lorentz transformations of reduced density matrices for entangled systems may not be completely positive maps. Quantum field theory, which is necessary for a consistent description of interactions, implies a fundamental trade-off between detector reliability and localizability. General relativity produces new, counterintuitive effects, in particular when black holes (or more generally, event horizons) are involved. Most of the current concepts in quantum information theory may then require a reassessment.

Abstract:
When an electromagnetic signal propagates in vacuo, a polarization detector cannot be rigorously perpendicular to the wave vector because of diffraction effects. The vacuum behaves as a noisy channel, even if the detectors are perfect. The ``noise'' can however be reduced and nearly cancelled by a relative motion of the observer toward the source. The standard definition of a reduced density matrix fails for photon polarization, because the transversality condition behaves like a superselection rule. We can however define an effective reduced density matrix which corresponds to a restricted class of positive operator-valued measures. There are no pure photon qubits, and no exactly orthogonal qubit states.

Abstract:
We consider open dynamical systems, subject to external interventions by agents that are not completely described by the theory (classical or quantal). These interventions are localized in regions that are relatively spacelike. Under these circumstances, no relativistic transformation law exists that relates the descriptions of the physical system by observers in relative motion. Still, physical laws are the same in all Lorentz frames.

In this paper, I discuss whether superluminal particles exist in the general relativistic theory of gravity. It seems that the answer to this question is negative. In truth, the result may only represent a difficulty to special but not general relativity, the later allowing both Lorentzian and Euclidian metrics. An Euclidian metric does not restrict speed. Although only the Lorentzian metric is stable, an Euclidian metric can be created under special gravitational circumstances and persist in a limited region of space-time causing possible superluminality.

Abstract:
The ``little group'' for massless particles (namely, the Lorentz transformations $\Lambda$ that leave a null vector invariant) is isomorphic to the Euclidean group E2: translations and rotations in a plane. We show how to obtain explicitly the rotation angle of E2 as a function of $\Lambda$ and we relate that angle to Berry's topological phase. Some particles admit both signs of helicity, and it is then possible to define a reduced density matrix for their polarization. However, that density matrix is physically meaningless, because it has no transformation law under the Lorentz group, even under ordinary rotations.