oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 28 )

2019 ( 209 )

2018 ( 181 )

2017 ( 178 )

Custom range...

Search Results: 1 - 10 of 99723 matches for " Christopher I. Cazzonelli "
All listed articles are free for downloading (OA Articles)
Page 1 /99723
Display every page Item
A Spontaneous Dominant-Negative Mutation within a 35S::AtMYB90 Transgene Inhibits Flower Pigment Production in Tobacco
Jeff Velten,Cahid Cakir,Christopher I. Cazzonelli
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0009917
Abstract: In part due to the ease of visual detection of phenotypic changes, anthocyanin pigment production has long been the target of genetic and molecular research in plants. Specific members of the large family of plant myb transcription factors have been found to play critical roles in regulating expression of anthocyanin biosynthetic genes and these genes continue to serve as important tools in dissecting the molecular mechanisms of plant gene regulation.
Plant viral intergenic DNA sequence repeats with transcription enhancing activity
Jeff Velten, Kevin J Morey, Christopher I Cazzonelli
Virology Journal , 2005, DOI: 10.1186/1743-422x-2-16
Abstract: DNA sequences from the intergenic regions of 29 geminiviruses or nanoviruses were scanned for repeated sequence elements to be tested for transcription enhancing activity. 105 elements were identified and placed immediately upstream from a minimal plant-functional promoter fused to an intron-containing luciferase reporter gene. Transient luciferase activity was measured within Agrobacteria-infused Nicotiana tobacum leaf tissue. Of the 105 elements tested, 14 were found to reproducibly elevate reporter gene activity (>25% increase over that from the minimal promoter-reporter construct, p < 0.05), while 91 elements failed to increase luciferase activity. A previously described "conserved late element" (CLE) was identified within tested repeats from 5 different viral species was found to have intrinsic enhancer activity in the absence of viral gene products. The remaining 9 active elements have not been previously demonstrated to act as functional promoter components.Biological significance for the active DNA elements identified is supported by repeated isolation of a previously defined viral element (CLE), and the finding that two of three viral enhancer elements examined were markedly enriched within both geminivirus sequences and within Arabidopsis promoter regions. These data provide a useful starting point for virologists interested in undertaking more detailed analysis of geminiviral promoter function.Traditionally, analyses of viral promoter structure-function relationship have involved directed deletion or disruption of promoter structure, followed by determination of resulting changes in transcription, if any, resulting from the alterations [1]. A relatively small subset of the promoter elements identified in this way have been subsequently isolated and tested for their ability to influence transcription when inserted into alternative, well defined, basal promoters [2]. As an alternative to so-called 'promoter bashing' approaches to the study of promoter struc
Inflorescence stem grafting made easy in Arabidopsis
Nisar Nazia,Verma Shelley,Pogson Barry J,Cazzonelli Christopher I
Plant Methods , 2012, DOI: 10.1186/1746-4811-8-50
Abstract: Background Plant grafting techniques have deepened our understanding of the signals facilitating communication between the root and shoot, as well as between shoot and reproductive organs. Transmissible signalling molecules can include hormones, peptides, proteins and metabolites: some of which travel long distances to communicate stress, nutrient status, disease and developmental events. While hypocotyl micrografting techniques have been successfully established for Arabidopsis to explore root to shoot communications, inflorescence grafting in Arabidopsis has not been exploited to the same extent. Two different strategies (horizontal and wedge-style inflorescence grafting) have been developed to explore long distance signalling between the shoot and reproductive organs. We developed a robust wedge-cleft grafting method, with success rates greater than 87%, by developing better tissue contact between the stems from the inflorescence scion and rootstock. We describe how to perform a successful inflorescence stem graft that allows for reproducible translocation experiments into the physiological, developmental and molecular aspects of long distance signalling events that promote reproduction. Results Wedge grafts of the Arabidopsis inflorescence stem were supported with silicone tubing and further sealed with parafilm to maintain the vascular flow of nutrients to the shoot and reproductive tissues. Nearly all (87%) grafted plants formed a strong union between the scion and rootstock. The success of grafting was scored using an inflorescence growth assay based upon the growth of primary stem. Repeated pruning produced new cauline tissues, healthy flowers and reproductive siliques, which indicates a healthy flow of nutrients from the rootstock. Removal of the silicone tubing showed a tightly fused wedge graft junction with callus proliferation. Histological staining of sections through the graft junction demonstrated the differentiation of newly formed vascular connections, parenchyma tissue and lignin accumulation, supporting the presumed success of the graft union between two sections of the primary inflorescence stem. Conclusions We describe a simple and reliable method for grafting sections of an Arabidopsis inflorescence stem. This step-by-step protocol facilitates laboratories without grafting experience to further explore the molecular and chemical signalling which coordinates communications between the shoot and reproductive tissues.
Transgene Silencing and Transgene-Derived siRNA Production in Tobacco Plants Homozygous for an Introduced AtMYB90 Construct
Jeff Velten, Cahid Cakir, Eunseog Youn, Junping Chen, Christopher I. Cazzonelli
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0030141
Abstract: Transgenic tobacco (Nicotiana tabacum) lines were engineered to ectopically over-express AtMYB90 (PAP2), an R2–R3 Myb gene associated with regulation of anthocyanin production in Arabidopsis thaliana. Independently transformed transgenic lines, Myb27 and Myb237, accumulated large quantities of anthocyanin, generating a dark purple phenotype in nearly all tissues. After self-fertilization, some progeny of the Myb27 line displayed an unexpected pigmentation pattern, with most leaves displaying large sectors of dramatically reduced anthocyanin production. The green-sectored 27Hmo plants were all found to be homozygous for the transgene and, despite a doubled transgene dosage, to have reduced levels of AtMYB90 mRNA. The observed reduction in anthocyanin pigmentation and AtMYB90 mRNA was phenotypically identical to the patterns seen in leaves systemically silenced for the AtMYB90 transgene, and was associated with the presence of AtMYB90-derived siRNA homologous to both strands of a portion of the AtMYB90 transcribed region. Activation of transgene silencing in the Myb27 line was triggered when the 35S::AtMYB90 transgene dosage was doubled, in both Myb27 homozygotes, and in plants containing one copy of each of the independently segregating Myb27 and Myb237 transgene loci. Mapping of sequenced siRNA molecules to the Myb27 TDNA (including flanking tobacco sequences) indicated that the 3′ half of the AtMYB90 transcript is the primary target for siRNA associated silencing in both homozygous Myb27 plants and in systemically silenced tissues. The transgene within the Myb27 line was found to consist of a single, fully intact, copy of the AtMYB90 construct. Silencing appears to initiate in response to elevated levels of transgene mRNA (or an aberrant product thereof) present within a subset of leaf cells, followed by spread of the resulting small RNA to adjacent leaf tissues and subsequent amplification of siRNA production.
Role of the Arabidopsis PIN6 Auxin Transporter in Auxin Homeostasis and Auxin-Mediated Development
Christopher I. Cazzonelli, Marleen Vanstraelen, Sibu Simon, Kuide Yin, Ashley Carron-Arthur, Nazia Nisar, Gauri Tarle, Abby J. Cuttriss, Iain R. Searle, Eva Benkova, Ulrike Mathesius, Josette Masle, Ji?í Friml, Barry J. Pogson
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0070069
Abstract: Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin–regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development.
Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis
Jianzhong Ma, Christopher I. Amos
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0040224
Abstract: Despite the significant advances made over the last few years in mapping inversions with the advent of paired-end sequencing approaches, our understanding of the prevalence and spectrum of inversions in the human genome has lagged behind other types of structural variants, mainly due to the lack of a cost-efficient method applicable to large-scale samples. We propose a novel method based on principal components analysis (PCA) to characterize inversion polymorphisms using high-density SNP genotype data. Our method applies to non-recurrent inversions for which recombination between the inverted and non-inverted segments in inversion heterozygotes is suppressed due to the loss of unbalanced gametes. Inside such an inversion region, an effect similar to population substructure is thus created: two distinct “populations” of inversion homozygotes of different orientations and their 1:1 admixture, namely the inversion heterozygotes. This kind of substructure can be readily detected by performing PCA locally in the inversion regions. Using simulations, we demonstrated that the proposed method can be used to detect and genotype inversion polymorphisms using unphased genotype data. We applied our method to the phase III HapMap data and inferred the inversion genotypes of known inversion polymorphisms at 8p23.1 and 17q21.31. These inversion genotypes were validated by comparing with literature results and by checking Mendelian consistency using the family data whenever available. Based on the PCA-approach, we also performed a preliminary genome-wide scan for inversions using the HapMap data, which resulted in 2040 candidate inversions, 169 of which overlapped with previously reported inversions. Our method can be readily applied to the abundant SNP data, and is expected to play an important role in developing human genome maps of inversions and exploring associations between inversions and susceptibility of diseases.
Principal Components Analysis of Population Admixture
Jianzhong Ma, Christopher I. Amos
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0040115
Abstract: With the availability of high-density genotype information, principal components analysis (PCA) is now routinely used to detect and quantify the genetic structure of populations in both population genetics and genetic epidemiology. An important issue is how to make appropriate and correct inferences about population relationships from the results of PCA, especially when admixed individuals are included in the analysis. We extend our recently developed theoretical formulation of PCA to allow for admixed populations. Because the sampled individuals are treated as features, our generalized formulation of PCA directly relates the pattern of the scatter plot of the top eigenvectors to the admixture proportions and parameters reflecting the population relationships, and thus can provide valuable guidance on how to properly interpret the results of PCA in practice. Using our formulation, we theoretically justify the diagnostic of two-way admixture. More importantly, our theoretical investigations based on the proposed formulation yield a diagnostic of multi-way admixture. For instance, we found that admixed individuals with three parental populations are distributed inside the triangle formed by their parental populations and divide the triangle into three smaller triangles whose areas have the same proportions in the big triangle as the corresponding admixture proportions. We tested and illustrated these findings using simulated data and data from HapMap III and the Human Genome Diversity Project.
Theoretical Formulation of Principal Components Analysis to Detect and Correct for Population Stratification
Jianzhong Ma,Christopher I. Amos
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0012510
Abstract: The Eigenstrat method, based on principal components analysis (PCA), is commonly used both to quantify population relationships in population genetics and to correct for population stratification in genome-wide association studies. However, it can be difficult to make appropriate inference about population relationships from the principal component (PC) scatter plot. Here, to better understand the working mechanism of the Eigenstrat method, we consider its theoretical or “population” formulation. The eigen-equation for samples from an arbitrary number () of populations is reduced to that of a matrix of dimension , the elements of which are determined by the variance-covariance matrix for the random vector of the allele frequencies. Solving the reduced eigen-equation is numerically trivial and yields eigenvectors that are the axes of variation required for differentiating the populations. Using the reduced eigen-equation, we investigate the within-population fluctuations around the axes of variation on the PC scatter plot for simulated datasets. Specifically, we show that there exists an asymptotically stable pattern of the PC plot for large sample size. Our results provide theoretical guidance for interpreting the pattern of PC plot in terms of population relationships. For applications in genetic association tests, we demonstrate that, as a method of correcting for population stratification, regressing out the theoretical PCs corresponding to the axes of variation is equivalent to simply removing the population mean of allele counts and works as well as or better than the Eigenstrat method.
Forward-time simulation of realistic samples for genome-wide association studies
Bo Peng, Christopher I Amos
BMC Bioinformatics , 2010, DOI: 10.1186/1471-2105-11-442
Abstract: Using a general-purpose forward-time population genetics simulation environment, we developed a forward-time simulation method that can be used to simulate realistic samples for genome-wide association studies. We examined the properties of this simulation method by comparing simulated samples with real data and demonstrated its wide applicability using four examples, including a simulation of case-control samples with a disease caused by multiple interacting genetic and environmental factors, a simulation of trio families affected by a disease-predisposing allele that had been subjected to either slow or rapid selective sweep, and a simulation of a structured population resulting from recent population admixture.Our algorithm simulates populations that closely resemble the complex structure of the human genome, while allows the introduction of signals of natural selection. Because of its flexibility to generate different types of samples with arbitrary disease or quantitative trait models, this simulation method can simulate realistic samples to evaluate the performance of a wide variety of statistical gene mapping methods for genome-wide association studies.Simulated data sets of known disease-predisposing loci (DPL) have been widely used in the development and application of statistical methods that detect susceptibility genes for human genetic diseases [1,2]. Whereas simple samples simulated under idealized assumptions can be used to validate properties of statistical gene mapping methods, only samples that reflect the complex structure of the human genome and the genetic basis of human genetic diseases can be used to evaluate and compare the statistical power of these methods and to compare various sampling designs under realistic conditions. Otherwise, a gene mapping method may perform well in theory and on simulated datasets, but poorly on real datasets [3,4].Thanks to rapid advances in genotyping technology, genome-wide association studies (GWAS) have been i
Monodromy and Tangential Center Problems
Colin Christopher,Pavao Marde?i
Mathematics , 2008,
Abstract: We consider families of Abelian integrals arising from perturbations of planar Hamiltonian systems. The tangential center focus problem asks for the conditions under which these integrals vanish identically. The problem is closely related to the monodromy problem, which asks when the monodromy of a vanishing cycle generates the whole homology of the level curves of the Hamiltonian. We solve both these questions for the case when the Hamiltonian is hyperelliptic. As a side-product, we solve the corresponding problems for the "0-dimensional Abelian integrals" defined by Gavrilov and Movasati.
Page 1 /99723
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.