oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 31 )

2018 ( 61 )

2017 ( 63 )

2016 ( 70 )

Custom range...

Search Results: 1 - 10 of 20463 matches for " Bokyung Kim "
All listed articles are free for downloading (OA Articles)
Page 1 /20463
Display every page Item
Analysis of occupational noise for the healthy life according to the job characteristics  [PDF]
Lim-Kyu Lee, Ju-Hyun Kim, Bokyung Kim, Junghwan Kim
Health (Health) , 2012, DOI: 10.4236/health.2012.410137
Abstract: Noise is known that the physical risk factors defined as any unwanted sound. It can induce the health problems such as hearing loss or annoyance. The objective of this study was to assess the occupational noise exposure of nine groups for twenty peoples according to job characteristics and to compare the noise level by different variables. Personal noise levels were measured for three times using by dosimeters for each participant in Korea. The mean time weighted average noise level (TWA) of total was 73.2 ± 11.5 dBA by American conference of governmental industrial hygienists (ACGIH) standard. Especially, Korean classical music students were highly exposed to 93.2 ± 6.2 dBA but, office workers were 63.2 ± 6.6 dBA. In case of peak sound pressure level (Lpeak), Korean classical music students and firefighters were exposed to the highest level of 151.8 dBC and 145.8 dBC during playing and dispatching, respectively. The analysis of noise level showed that Leq had positive correlations between TWA by ministry of employment and labour (MOEL) (r = 0.98, p < 0.01) and TWA by ACGIH (r = 0.98, p < 0.01). Unlikely other groups, the noise exposure level of the Korean classical music students were exceeded the ACGIH standard. These results suggest that Korean classical music students were exposed high noise level and some solutions are need to reduce the noise exposure level such as using hearing protect device.
Analysis of the sensory threshold between paretic and nonparetic sides for healthy rehabilitation in hemiplegic patients after stroke  [PDF]
Hye-Joo Jeon, Ju-Hyun Kim, Byong-Yong Hwang, Bokyung Kim, Junghwan Kim
Health (Health) , 2012, DOI: 10.4236/health.2012.412183
Abstract: The purpose of this study was to investigate the differences in the sensory threshold between the paretic and nonparetic sides of hemiplegic patients. 28 patients who were hemiplegic post-stroke (14 men and 14 women) participated in the electrical sensory and pain thresholds study; 22 patients who were hemiplegic post-stroke (13 men, 9 women) participated in a study measureing the sensory threshold with light touch. Electrical sensory and pain thresholds were measured in the forearm via transcutaneous electrical nerve stimulation. The light-touch threshold was measured in the forearm using monofilaments. The light-touch, electrical sensory, and pain thresholds for the paretic side were significantly higher than for the nonparetic side in our population, respectively. In both the nonparetic and paretic sides, the male group generally showed higher thresholds for pain and sensation than did the female group. These results suggest that the different evaluations of sensory thresholds performed in this study for healthy rehabilitation will be a valuable clinical tool in hemiplegic patients after stroke.
Does phosphorylation of cofilin affect the progression of human bladder cancer?
Chung Hong,Kim Bokyung,Jung Seung-Hyo,Won Kyung-Jong
BMC Cancer , 2013, DOI: 10.1186/1471-2407-13-45
Abstract: Background We determined the differently expressed protein profiles and their functions in bladder cancer tissues with the aim of identifying possible target proteins and underlying molecular mechanisms for taking part in their progression. Methods We examined the expression of proteins by proteomic analysis and western blot in normal urothelium, non-muscle-invasive bladder cancers (NMIBCs), and muscle-invasive bladder cancers (MIBCs). The function of cofilin was analyzed using T24 human bladder cancer cells. Results The expression levels of 12 proteins were altered between bladder cancers and normal bladder tissues. Of these proteins, 14-3-3σ was upregulated in both NMIBCs and MIBCs compared with controls. On the other hand, myosin regulatory light chain 2, galectin-1, lipid-binding AI, annexin V, transthyretin, CARD-inhibitor of NF-κB-activating ligand, and actin prepeptide were downregulated in cancer samples. Cofilin, an actin-depolymerizing factor, was prominent in both NMIBCs and MIBCs compared with normal bladder tissues. Furthermore, we confirmed that cofilin phosphorylation was more prominent in MIBCs than in NMIBCs using immunoblotting and immunohistochemcal analyses. Epidermal growth factor (EGF) increased the phosphorylation of cofilin and elevated the migration in T24 cells. Knockdown of cofilin expression with small interfering RNA attenuated the T24 cell migration in response to EGF. Conclusions These results demonstrate that the increased expression and phosphorylation of cofilin might play a role in the occurrence and invasiveness of bladder cancer. We suspected that changes in cofilin expression may participate in the progression of the bladder cancer.
Optimal Scheduling for the Complementary Energy Storage System Operation Based on Smart Metering Data in the DC Distribution System
Bokyung Ko,Nugroho Prananto Utomo,Gilsoo Jang,Jaehan Kim,Jintae Cho
Energies , 2013, DOI: 10.3390/en6126569
Abstract: The increasing penetration of distributed generation (DG) sources in low-voltage grid feeders causes problems concerning voltage regulation. The penetration of DG sources such as photovoltaics (PVs) in the distribution system can significantly impact the power flow and voltage conditions on the customer side. As the DG sources are more commonly connected to low-voltage distribution systems, voltage fluctuations in the distribution system are experienced because of the DG fluctuation and uncertainty. Therefore, the penetration of DGs in distribution systems is often limited by the required operating voltage ranges. By using an energy storage system (ESS), voltage fluctuation can be compensated for, thus satisfying the voltage regulation requirements. This paper presents an ESS scheduling algorithm based on the power injection data obtained from a smart metering system. The proposed ESS scheduling algorithm is designed for use within a direct current (DC) distribution grid, which comprises customers, each with a PV and an ESS system. The purpose of this ESS scheduling algorithm is to optimize the ESS scheduling by considering the complementary operation among all the ESSs.
Pharmacokinetic properties and antitumor efficacy of the 5-fluorouracil loaded PEG-hydrogel
Hee Yi, Hee-Jung Cho, Soo-Min Cho, Dong-Goo Lee, AM Abd El-Aty, So-Jeong Yoon, Gun-Won Bae, Kwang Nho, Bokyung Kim, Chi-Ho Lee, Jin-Suk Kim, Michael G Bartlett, Ho-Chul Shin
BMC Cancer , 2010, DOI: 10.1186/1471-2407-10-211
Abstract: A 5-FU-loaded PEG-hydrogel was implanted subcutaneously to evaluate the drug retention time and the anticancer effect. For the pharmacokinetic study, two groups of male rats were administered either an aqueous solution of 5-FU (control group)/or a 5-FU-loaded PEG-hydrogel (treated group) at a dose of 100 mg/kg. For the pharmacodynamic study, a human non-small-cell lung adenocarcinoma (NSCLC) cell line, A549 was inoculated to male nude mice with a cell density of 3 × 106. Once tumors start growing, the mice were injected with 5-FU/or 5-FU-loaded PEG-hydrogel once a week for 4 weeks. The growth of the tumors was monitored by measuring the tumor volume and calculating the tumor inhibition rate (IR) over the duration of the study.In the pharmacokinetic study, the 5-FU-loaded PEG-hydrogel gave a mean residence time (MRT) of 8.0 h and the elimination half-life of 0.9 h; these values were 14- and 6-fold, respectively, longer than those for the free solution of 5-FU (p < 0.05). In the pharmacodynamic study, A549 tumor growth was significantly inhibited in the 5-FU-loaded PEG-hydrogel group in comparison to the untreated group beginning on Day 14 (p < 0.05-0.01). Moreover, the 5-FU-loaded PEG-hydrogel group had a significantly enhanced tumor IR (p < 0.05) compared to the free 5-FU drug treatment group.We suggest that 5-FU-loaded PEG-hydrogels could provide a useful tool for the development of an anticancer drug delivery system.The drug 5-Fluorouracil (5-FU) is one of the most common chemotherapeutic agents used against malignant tumors [1]. However, this drug has some pharmacokinetic limitations including unfavorable maximum drug concentrations (Cmax) and short half lives following systemic bolus injection. Earlier reports have demonstrated that acute increases in plasma 5-FU concentration can cause severe side effects and the antitumor effects of 5-FU depend on exposure duration rather than plasma concentration levels [2]. Therefore, 5-FU acts more in a time-dependent manne
Learning a nonlinear dynamical system model of gene regulation: A perturbed steady-state approach
Arwen Meister,Ye Henry Li,Bokyung Choi,Wing Hung Wong
Quantitative Biology , 2012, DOI: 10.1214/13-AOAS645
Abstract: Biological structure and function depend on complex regulatory interactions between many genes. A wealth of gene expression data is available from high-throughput genome-wide measurement technologies, but effective gene regulatory network inference methods are still needed. Model-based methods founded on quantitative descriptions of gene regulation are among the most promising, but many such methods rely on simple, local models or on ad hoc inference approaches lacking experimental interpretability. We propose an experimental design and develop an associated statistical method for inferring a gene network by learning a standard quantitative, interpretable, predictive, biophysics-based ordinary differential equation model of gene regulation. We fit the model parameters using gene expression measurements from perturbed steady-states of the system, like those following overexpression or knockdown experiments. Although the original model is nonlinear, our design allows us to transform it into a convex optimization problem by restricting attention to steady-states and using the lasso for parameter selection. Here, we describe the model and inference algorithm and apply them to a synthetic six-gene system, demonstrating that the model is detailed and flexible enough to account for activation and repression as well as synergistic and self-regulation, and the algorithm can efficiently and accurately recover the parameters used to generate the data.
Boswellic Acid Suppresses Growth and Metastasis of Human Pancreatic Tumors in an Orthotopic Nude Mouse Model through Modulation of Multiple Targets
Byoungduck Park, Sahdeo Prasad, Vivek Yadav, Bokyung Sung, Bharat B. Aggarwal
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0026943
Abstract: Pancreatic cancer (PaCa) is one of the most lethal cancers, with an estimated 5-year survival of <5% even when patients are given the best treatment available. In addition, these treatments are often toxic and expensive, thus new agents which are safe, affordable and effective are urgently needed. We describe here the results of our study with acetyl-11-keto-β-boswellic acid (AKBA), an agent obtained from an Ayurvedic medicine, gum resin of Boswellia serrata. Whether AKBA has an activity against human PaCa, was examined in in vitro models and in an orthotopic nude mouse model of PaCa. We found that AKBA inhibited the proliferation of four different PaCa cell lines (AsPC-1, PANC-28, and MIA PaCa-2 with K-Ras and p53 mutations, and BxPC-3 with wild-type K-Ras and p53 mutation). These effects correlated with an inhibition of constitutively active NF-κB and suppression of NF-κB regulating gene expression. AKBA also induced apoptosis, and sensitized the cells to apoptotic effects of gemcitabine. In the orthotopic nude mouse model of PaCa, p.o. administration of AKBA alone (100 mg/kg) significantly inhibited the tumor growth; this activity was enhanced by gemcitabine. In addition, AKBA inhibited the metastasis of the PaCa to spleen, liver, and lungs. This correlated with decreases in Ki-67, a biomarker of proliferation, and CD31, a biomarker of microvessel density, in the tumor tissue. AKBA produced significant decreases in the expression of NF-κB regulating genes in the tissues. Immunohistochemical analysis also showed AKBA downregulated the expression of COX-2, MMP-9, CXCR4, and VEGF in the tissues. Overall these results demonstrate that AKBA can suppress the growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model that correlates with modulation of multiple targets.
Targeting Inflammatory Pathways by Triterpenoids for?Prevention and Treatment of Cancer
Vivek R. Yadav,Sahdeo Prasad,Bokyung Sung,Ramaswamy Kannappan,Bharat B. Aggarwal
Toxins , 2010, DOI: 10.3390/toxins2102428
Abstract: Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”.
Evidence that GTP-binding domain but not catalytic domain of transglutaminase 2 is essential for epithelial-to-mesenchymal transition in mammary epithelial cells
Anupam Kumar, Jia Xu, Bokyung Sung, Santosh Kumar, Dihua Yu, Bharat B Aggarwal, Kapil Mehta
Breast Cancer Research , 2012, DOI: 10.1186/bcr3085
Abstract: Using various mutant constructs, we analyzed the activity of TG2 that is essential for promoting the EMT-CSC phenotype.Our results suggest that catalytically inactive TG2 (TG2-C277S) is as effective as wild-type TG2 (TG2-WT) in inducing the EMT-CSC in mammary epithelial cells. In contrast, overexpression of a GTP-binding-deficient mutant (TG2-R580A) was completely incompetent in this regard. Moreover, TG2-dependent activation of the proinflammatory transcription factor NF-κB is deemed essential for promoting the EMT-CSC phenotype in mammary epithelial cells.Our results suggest that the transamidation activity of TG2 is not essential for promoting its oncogenic functions and provide a strong rationale for developing small-molecule inhibitors to block GTP-binding pockets of TG2. Such inhibitors may have great potential for inhibiting the TG2-regulated pathways, reversing drug resistance and inhibiting the metastasis of cancer cells.Despite significant advances in early detection and treatment of breast cancer, mortality due to metastatic disease remains high. A growing body of evidence supports the notion that acquisition of epithelial-to-mesenchymal transition (EMT) by breast cancer cells is an important mechanism in the progression and pathogenesis of cancer [1,2]. EMT is a developmentally regulated process in which adherent epithelial cells lose their epithelial characteristics and acquire mesenchymal properties, including fibroid morphology, characteristic changes in gene expression and increased invasion and resistance to chemotherapy [3]. In addition to eliciting the invasive phenotype, EMT also induces cancer stem cell (CSC)-like traits that are considered to provide cancer cells with the ability to self-renew and colonize at metastatic sites [4]. Thus aberrant expression of EMT regulators in breast cancer cells may contribute to disease progression, and their identification could yield novel therapeutic targets for improved patient outcomes.In our quest to det
Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4
Bokyung Son, Jiae Yun, Jeong-A Lim, Hakdong Shin, Sunggi Heu, Sangryeol Ryu
BMC Microbiology , 2012, DOI: 10.1186/1471-2180-12-33
Abstract: The endolysin from B. cereus phage B4, designated LysB4, was identified and characterized. In silico analysis revealed that this endolysin had the VanY domain at the N terminus as the catalytic domain, and the SH3_5 domain at the C terminus that appears to be the cell wall binding domain. Biochemical characterization of LysB4 enzymatic activity showed that it had optimal peptidoglycan hydrolase activity at pH 8.0-10.0 and 50°C. The lytic activity was dependent on divalent metal ions, especially Zn2+. The antimicrobial spectrum was relatively broad because LysB4 lysed Gram-positive bacteria such as B. cereus, Bacillus subtilis and Listeria monocytogenes and some Gram-negative bacteria when treated with EDTA. LC-MS analysis of the cell wall cleavage products showed that LysB4 was an L-alanoyl-D-glutamate endopeptidase, making LysB4 the first characterized endopeptidase of this type to target B. cereus.LysB4 is believed to be the first reported L-alanoyl-D-glutamate endopeptidase from B. cereus-infecting bacteriophages. The properties of LysB4 showed that this endolysin has strong lytic activity against a broad range of pathogenic bacteria, which makes LysB4 a good candidate as a biocontrol agent against B. cereus and other pathogenic bacteria.Bacillus cereus is a Gram-positive, spore-forming, rod-shape bacterium that grows well in aerobic and anaerobic environments [1]. It causes food poisoning by producing two different types of toxins: an emetic toxin and a diarrheal toxin [2]. Although the symptoms caused by B. cereus food poisoning are relatively mild, the incidence of the disease is gradually increasing, and it can develop into severe disease [3]. In addition, B. cereus can survive at a wide temperature range and form spores in harsh environments, especially during food processing; therefore, measures to control B. cereus effectively in the food industry are necessary [4,5].Recently, endolysins have been explored as promising antibacterial agents. Endolysins are
Page 1 /20463
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.