oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 360 )

2018 ( 1132 )

2017 ( 1110 )

2016 ( 1250 )

Custom range...

Search Results: 1 - 10 of 27194 matches for " <i>Cry</i> Gene Diversity "
All listed articles are free for downloading (OA Articles)
Page 1 /27194
Display every page Item
Biodiversity of Bacillus thuringiensis Strains and Their Cry Genes in Ecosystems of Kyrgyzstan  [PDF]
Tinatin Doolotkeldieva, Andreas Leclerque, Saykal Bobusheva, Christina Schuster
Advances in Bioscience and Biotechnology (ABB) , 2018, DOI: 10.4236/abb.2018.93009
Abstract: The present study aims to isolate the unknown and known serotypes of Bacilllus thuringiensis (Bt) from natural objects in Kyrgyzstan. A total of 83 Bt strains were isolated from natural substrates, of which 30% were taken from the soil and litter samples, 69.7% from dead insects and about 0.3% from slugs. Serological examination revealed that such subspecies as var. thuringiensis (H-1), var. alesti (H-3), var. sotto (H-4a4b) and var. entomocidus (H-6) predominated in the upper horizon of soils in all climatic zones. In the dead insects such species as subsp. thuringiensis, subsp. galleria, subsp. sotto, subsp. kurstaki, subsp. Aizawai and subsp. Entomocidus dominated. A set of Bt strains isolated from insects and soil samples, selected from different ecosystems in Kyrgyzstan was molecular taxonomically characterized using the pycA gene as marker for phylogenetic reconstruction. Within the Bacillus cereus sensu lato species complex, all Kyrgyz isolates were shown to belong to the B. cereus subspecies thuringiensis. Most isolates were assigned to the lineage Bt tolworthi, with two isolates each belonging to the lineages Bt kurstaki and Bt sotto. A high degree of cry gene diversity was demonstrated in the set of Bt isolates, with several gene copies simultaneously present in a single strain; a particularly conspicuous trait was the frequent combination of Lepidopteran-specific cryI with Dipteran-specific cryIV genes in the same Bt isolate.
RETRACTED: Agrobacterium Mediated Transformation of Vigna mungo (L.) Hepper with Cry1Ac Gene for Insect Resistance  [PDF]
Dilip Kumar Das, Mrinalini Bhagat, Sangeeta Shree
American Journal of Plant Sciences (AJPS) , 2016, DOI: 10.4236/ajps.2016.72031
Abstract:

Short Retraction Notice

The paper does not meet the standards of \"American Journal of Plant Sciences\".

This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.

Editor guiding this retraction: Prof. Sukumar Saha (EiC of AJPS).

Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked \"RETRACTED\".

Genomic Fingerprinting of Camelina Species Using cTBP as Molecular Marker  [PDF]
Incoronata Galasso, Antonella Manca, Luca Braglia, Elena Ponzoni, Diego Breviario
American Journal of Plant Sciences (AJPS) , 2015, DOI: 10.4236/ajps.2015.68122
Abstract: Interest on the genus Camelina has recently increased due to the biofuel, or jet fuel, potential of the oil extracted from seeds of the cultivated species Camelina sativa (L.) Crantz. While our knowledge on C. sativa is constantly augmenting, only few studies have been performed on the other species of the genus, which could be a potentially useful material for the genetic improvement of C. sativa. The genus Camelina consists of 11 species, but only six (C. sativa, C. microcarpa, C. alyssum, C. rumelica, C. hispida and C. laxa) could be retrieved from germplasm banks to carry out genomic fingerprinting studies based on the use of the cTBP molecular marker. Each species, with the exception of C. alyssum that is proposed to be a subspecies of C. sativa, shows a distinct cTBP profile resulting from multiple DNA length polymorphisms present in the second intron of the members of the β-tubulin gene family. In contrast to the high level of genetic diversity detected among the six Camelina species, low variability is observed among and within the accessions of the same species, except for C. hispida that is characterized by an intra-accession high number of cTBP polymorphic bands. In addition, cTBP is also able to identify incorrectly classified accessions and provide information on the ploidy level of each species.
Genetic Analysis of Selected Mutants of Cowpea (Vigna unguiculata [L.] Walp) Using Simple Sequence Repeat and rcbL Markers  [PDF]
Festus Olakunle Olasupo, Christopher Olumuyiwa Ilori, Esther Adekemi Stanley, Temitope Esther Owoeye, David Okeh Igwe
American Journal of Plant Sciences (AJPS) , 2018, DOI: 10.4236/ajps.2018.913199
Abstract: Genetic diversity evaluation of mutant lines is essential to facilitate their conservation and utility in breeding programs. Characterization of plant genotypes using morphological markers has limitations which make the procedure inefficient. Application of molecular tools for characterization and diversity assessment has been found useful to complement phenotypic evaluation of plant population. Therefore genetic diversity of some cowpea mutant lines was studied using simple sequence repeats (SSR) markers. DNA barcoding marker, ribulose-1,5-bisphosphate carboxylase(rbcL) of the chloroplast DNA (cpDNA) was also used for characterization and identification of the mutants to species level. The mean polymorphic information content (0.51) obtained from the microsatellites showed high polymorphism in accessing wide genetic diversity among the mutants and their parents. Dendrogram generated revealed 8 groups with most mutants clustered separately from their parents. Sequence analysis revealed insertions/deletions (InDels) and base substitutions as the two main classes of mutations induced in the plastid DNA of the mutants studied. The nucleotide frequencies were 26.95% (A), 34.43% (T), 24.09% (C) and 14.53% (G). A total of 61.38% AT rich region was identified, while GC rich region was found to be 38.62%. Highest rate of mutations were observed in region 3 - 4 indicating that the region is less conserved in cowpea rbcL gene. The present study proved that SSR markers are useful for the genetic diversity assessment of cowpea mutants. It also proved the efficiency of rbcL markers in mutants’ identification. The results indicate that the mutants are valuable genetic resources that have
Genetic Diversity in the Camel Tick Hyalomma dromedarii (Acari: Ixodidae) Based on Mitochondrial Cytochrome c Oxidase Subunit I (COI) and Randomly Amplified Polymorphic DNA Polymerase Chain Reaction (RAPD-PCR)  [PDF]
Mohammad Ali Al-Deeb, Mohamed Rizk Enan
Advances in Entomology (AE) , 2018, DOI: 10.4236/ae.2018.64021
Abstract: Hyalomma dromedarii ticks are important disease vectors to camels in the UAE and worldwide. Ticks can be identified using DNA-based techniques. In addition, such techniques could be utilized to study the intraspecific genetic diversity in tick populations. In this study, the genetic diversity of four H. dromedarii populations was investigated using mitochondrial cytochrome c oxidase subunit I (COI) gene and randomly amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). The results showed that both of the aforementioned techniques produced similar grouping patterns. Moreover, they revealed that the four tick populations had high levels of genetic similarity. However, one population was slightly different from the three other populations. The current study demonstrated that H. dromedarii ticks in the UAE are very similar at the genetic level and that investigating more locations and screening larger numbers of ticks could reveal larger genetic differences.
Molecular Genetic Diversity in Iranian Populations of Puccinia triticina, the Causal Agent of Wheat Leaf Rust  [PDF]
Seyed Taha Dadrezaie, Samer Lababidi, Kumarse Nazari, Ebrahim Mohammadi Goltapeh, Farzad Afshari, Fida Alo, Masoud Shams-Bakhsh, Naser Safaie
American Journal of Plant Sciences (AJPS) , 2013, DOI: 10.4236/ajps.2013.47168
Abstract:

Wheat leaf rust caused by Puccinia triticina, is the most common and widely distributed wheat rust in the world. In order to study the genetic structure of leaf rust population 14 pairs of AFLP and 6 pairs of FAFLP primers evaluated on 86 isolates samples collected in Iran during spring of 2009. Results showed that almost all investigated isolates were genetically different and special pattern of AFLP allele’s that confirm high genetic diversity within leaf rust population was observed. Analyses showed, all provinces were classified into three major groups particularly similar clusters were found between then neighboring provinces. Rust spore can follow the migration pattern in short and long distances to neighbor in provinces. Results indicated that the greatest variability was revealed by 97% of genetic differentiation within leaf rust populations and the lesser variation of 3% was observed between the rust populations. These results suggested that each population was not completely identical and high gene flow has occurred among the leaf rust population of different provinces. The highest differentiation and genetic distance among the Iranian leaf rust populations was detected between leaf rust population in Sistan and Baluchistan and highest similarity was observed between in Ardabil provinces. The high pathogenic variability of leaf rust races in Ardabil and Northern Khorasan may be an indication that these two regions are the center of origin of pathogenic arability. Present study shows that leaf rust population in Iran is highly dynamic and variable.

Genetic Variability and Reproduction Structure of Corbicula japonica in Major Fishing Brackish Lakes in Japan  [PDF]
Tsudzumi Mito, Tomomi Tanaka, Futoshi Aranishi
Open Journal of Marine Science (OJMS) , 2014, DOI: 10.4236/ojms.2014.43017
Abstract:
Corbicula japonica is the best-known bivalve inhabiting widely in brackish estuaries and lakes in Japan. Although this species has been most commercially important species of inland fisheries in Japan, the gradual decline in its production over 40 years caused not only economic problems in fishery industry but also ecological disturbances in biodiversity conservation. The aim of this study was to evaluate the reproduction structure of C. japonica populations in major fishing brackish lakes based on the genetic diversity inferred by mitochondrial DNA sequence analysis of the cytochrome oxidase c subunit I gene. Of a total of 188 C. japonica individuals collected in Lakes Shinji, Jusan, Ogawara and Abashiri, 25 haplotypes were obtained, and only the haplotype HT01 was apparent with relatively high abundance in all lakes. Minimum spanning network analysis of haplotypes showed different population structures between Lake Shinji and Lakes Jusan, Ogawara and Abashiri. In addition, pairwise population genetic distance FST and ΦST values were significantly higher in Lake Shinji than Lakes Jusan, Ogawara and Abashiri. The mismatch distribution analysis showed unimodal profile for Lakes Jusan and Ogawara and bimodal profile for Lakes Shinji and Abashiri. Those results indicate a recent population expansion in all lakes, and Lakes Shinji and Abashiri and Lakes Jusan and Ogawara maintained continuous reproduction structure and suffered to rapid population growth, respectively.
Genetic Variability and Population Structure of Ark Shell in Japan  [PDF]
Tomomi Tanaka, Futoshi Aranishi
Open Journal of Marine Science (OJMS) , 2014, DOI: 10.4236/ojms.2014.41002
Abstract:

Ark shell Scapharca kagoshimensis is one of the commercially important bivalve resources in East Asia. In Japan, the mass production method for its natural seedlings was developed in the 1880s, and they had been transplanted to an array of the major fishing areas. It has been therefore concerned with its genetic disturbance among not only current but also former fishing areas in Japan. This study was undertaken to ascertain its genetic diversity and population structure in East Asia by means of nucleotide sequence analysis of a 555-bp portion of the mitochondrial DNA COI gene. Of 225 individuals collected from 8 populations and 1 population in Japan and Korea, respectively, a total of 59 haplotypes, including 14 common haplotypes, were found, and Japan and Korea shared 3 common haplotypes. In Japan, the haplotype diversity and nucleotide diversity ranged from 0.65 to 0.93 and from 0.22% to 0.59%, respectively, reflecting relatively high levels of genetic diversity. The values in Korea were determined to be 0.45% and 0.19%, respectively, indicating significantly lower genetic diversity compared with that in Japan. Mismatch distribution analysis and neutrality tests showed a recent history of multiple types of reproduction and signals of demographic change in each population. These results suggest that S. kagoshimensis has experienced rapid population growth or reduction in population size such as a bottleneck in a short period.

Cloning of a New Truncated cry1Ac Gene from an Indian Isolate of Bacillus thuringiensis  [PDF]
A. Ramalakshmi, R. Manikandan, V. Balasubramani, V. Udayasuriyan
Advances in Microbiology (AiM) , 2014, DOI: 10.4236/aim.2014.41009
Abstract:

Transgenic Bt crops producing insecticidal crystal proteins from Bacillus thuringiensis (Bt), so-called Cry toxins, have proved useful in controlling insect pests. Among the cry toxins, Cry1A toxins are important because of high toxicity to lepidopteran pests and their widespread distribution among Bt strains. In Cry1A proteins, toxin fragment is comprised of about 620 amino acids of N-terminal region and C-terminal half is not required for toxicity. Four indigenous isolates of Bt viz., T15, T16, T20 and T31 were screened by PCR-RFLP for 3’-truncated cry1A gene(s) corresponding to toxin fragment. RFLP analysis of cry1A amplicons obtained from the four isolates of Bt showed presence of cry1Ac-type gene alone in three isolates. One of the cry1Ac-postive isolates, T15 which showed 100 percent mortality in Helicoverpa armigera, was

Analysis on Genetic Diversity of Radix Astragali by ISSR Markers  [PDF]
Yaling Liu, Pengfei Zhang, Ru Zhang, Meiling Song, Fengbo Liu, Wenquan Wang, Junling Hou
Advances in Bioscience and Biotechnology (ABB) , 2016, DOI: 10.4236/abb.2016.710037
Abstract: Radix Astragali has been an important traditional Chinese herbal medicine for over 2000 years. It is derived from two plant species, namely, Astragalus mongholicus [Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao] and Astragalus membranaceus [Astragalus membranaceus (Fisch.) Bge.] (Leguminosae ), according to the Pharmacopoeia of the People’s Republic of China. In this study, the genetic diversity and genetic relationships of Radix Astragali in China were analyzed by Inter-Simple Sequence Repeat (ISSR) markers. A total of 25 highly polymorphic ISSR primers were selected to amplify 95 Radix Astragali samples. Among 273 DNA bands amplified, 213 are polymorphic (percentage of polymorphic bands: 78%). The average value of the amplified bands was 10.9 for each primer, and the number varied from 4 to 20. The genetic diversity of the 95 Radix Astragali samples was analyzed by using POPGENE 1.32 software. The Nei’s genetic diversity index (h) and Shannon’s information index (I ) were 0.3590 and 0.5308, respectively, which indicated the abundant genetic diversity of Radix Astragali . The level of genetic diversity in A. membranaceus (h: 0.3109, I : 0.4657) was slightly lower than that in A. mongholicus (h: 0.3364, I : 0.4969). Considering the average genetic similarity coefficient by NTSYS analysis to cluster the A. membranaceus of nine habitats and A. mongholicus of five habitats, Radix Astragali samples were clustered into two groups according to place of origin. This clustering is different from traditional clustering, which divides groups according to species. Results obtained from this study will provide a theoretical basis for the molecular study on germplasm resources of Radix Astragali .
Page 1 /27194
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.