oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Differential Nitrogen Cycling in Semiarid Sub-Shrubs with Contrasting Leaf Habit  [PDF]
Sara Palacio, Melchor Maestro, Gabriel Montserrat-Martí
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0093184
Abstract: Nitrogen (N) is, after water, the most limiting resource in semiarid ecosystems. However, knowledge on the N cycling ability of semiarid woody plants is still very rudimentary. This study analyzed the seasonal change in the N concentrations and pools of the leaves and woody organs of two species of semiarid sub-shrubs with contrasting leaf habit. The ability of both species to uptake, remobilize and recycle N, plus the main storage organ for N during summer drought were evaluated. We combined an observational approach in the field with experimental 15N labelling of adult individuals grown in sand culture. Seasonal patterns of N concentrations were different between species and organs and foliar N concentrations of the summer deciduous Lepidium subulatum were almost double those of the evergreen Linum suffruticosum. L. subulatum up took ca. 60% more external N than the evergreen and it also had a higher N resorption efficiency and proficiency. Contrastingly, L. suffruticosum relied more on internal N remobilization for shoot growth. Differently to temperate species, the evergreen stored N preferentially in the main stem and old trunks, while the summer deciduous stored it in the foliage and young stems. The higher ability of L. subulatum to uptake external N can be related to its ability to perform opportunistic growth and exploit the sporadic pulses of N typical of semiarid ecosystems. Such ability may also explain its high foliar N concentrations and its preferential storage of N in leaves and young stems. Finally, L. suffruticosum had a lower ability to recycle N during leaf senescence. These strategies contrast with those of evergreen and deciduous species from temperate and boreal areas, highlighting the need of further studies on semiarid and arid plants.
Biogenic nitrogen gas production at the oxic-anoxic interface in the Cariaco Basin, Venezuela  [PDF]
E. Montes,M. A. Altabet,F. E. Muller-Karger,M. I. Scranton
Biogeosciences Discussions , 2012, DOI: 10.5194/bgd-9-10551-2012
Abstract: Excess nitrogen gas (excess N2) was measured in samples collected at six locations in the eastern and western sub-basins of the Cariaco Basin, Venezuela, in September 2008 (non-upwelling conditions) and March 2009 (upwelling conditions). During both sampling periods, excess N2 concentrations were below detection in surface waters, increasing to ~22 μmol N kg 1 at the oxic-anoxic interface ([O2] < ~ 4 μmol N kg 1, ~250 m). Below the oxic-anoxic interface (300–400 m), the average concentration of excess N2 was 24.7 ± 1.9 μmol N kg 1 in September 2008 and 27.5 ± 2.0 μmol N kg 1 in March 2009, i.e., excess N2 concentrations within this depth interval were ~ 3 μmol N kg 1 higher (p < 0.001) during the upwelling season compared to the non-upwelling period. These results suggest that N-loss in the Cariaco Basin may vary seasonally in response to changes in the flux of sinking particulate organic matter. We attribute the increase in excess N2 concentrations, or N-loss, observed during upwelling to: (1) higher availability of fixed nitrogen derived from suspended and sinking particles at the oxic-anoxic interface and/or (2) enhanced ventilation at the oxic-anoxic interface during upwelling.
Study of control strategy and simulation in anoxic-oxic nitrogen removal process
PENG Yong-zhen,WANG Zhi-hui,WANG Shu-ying,
PENG Yong-zhen
,WANG Zhi-hui,WANG Shu-ying

环境科学学报(英文版) , 2005,
Abstract: The control strategy and simulation of external carbon addition were specially studied in an anoxic-oxic(A/O) process with low carbon: nitrogen(C/N) domestic wastewater. The control strategy aimed to adjust the flow rate of external carbon dosage to the anoxic zone, thus the concentration of nitrate plus nitrite(NOx--N) in the anoxic zone was kept closed to the set point. The relationship was studied between the NOx--N concentration in the anoxic zone(S_ NO) and the dosage of external carbon, and the results showed that the removal efficiency of the total nitrogen(TN) could not be largely improved by double dosage of carbon source when S_ NO reached about 2 mg/L. Through keeping S_ NO at the level of about 2 mg/L, the demand of effluent quality could be met and the carbon dosage could be optimized. Based on the Activated Sludge Model No.1(ASM No.1), a simplified mathematical model of external carbon dosage was developed. Simulation results showed that PI controller and feed-forward PI controller both had good dynamic response and steady precision. And feed-forward PI controller had better control effects due to its consideration of influent disturbances.
Modeling the nitrogen fluxes in the Black Sea using a 3D coupledhydrodynamical-biogeochemical model: transport versus biogeochemicalprocesses, exchanges across the shelf break and comparison of the shelf anddeep sea ecodynamics
M. Grégoire,J. M. Beckers
Biogeosciences (BG) & Discussions (BGD) , 2004,
Abstract: A 6-compartment biogeochemical model of nitrogen cycling and plankton productivity has been coupled with a 3D general circulation model in an enclosed environment (the Black Sea) so as to quantify and compare, on a seasonal and annual scale, the typical internal biogeochemical functioning of the shelf and of the deep sea as well as to estimate the nitrogen and water exchanges at the shelf break. Model results indicate that the annual nitrogen net export to the deep sea roughly corresponds to the annual load of nitrogen discharged by the rivers on the shelf. The model estimated vertically integrated gross annual primary production is 130gCm-2yr-1 for the whole basin, 220gCm-2yr-1 for the shelf and 40gCm-2yr-1 for the central basin. In agreement with sediment trap observations, model results indicate a rapid and efficient recycling of particulate organic matter in the sub-oxic portion of the water column (60-80m) of the open sea. More than 95% of the PON produced in the euphotic layer is recycled in the upper 100m of the water column, 87% in the upper 80 m and 67% in the euphotic layer. The model estimates the annual export of POC towards the anoxic layer to 4 1010molyr-1. This POC is definitely lost for the system and represents 2% of the annual primary production of the open sea. Final Revised Paper (PDF, 3116 KB) Discussion Paper (BGD) Special Issue Citation: Grégoire, M. and Beckers, J. M.: Modeling the nitrogen fluxes in the Black Sea using a 3D coupledhydrodynamical-biogeochemical model: transport versus biogeochemicalprocesses, exchanges across the shelf break and comparison of the shelf anddeep sea ecodynamics, Biogeosciences, 1, 33-61, doi:10.5194/bg-1-33-2004, 2004. Bibtex EndNote Reference Manager XML
Modeling the nitrogen fluxes in the Black Sea using a 3D coupled hydrodynamical-biogeochemical model: transport versus biogeochemical processes, exchanges across the shelf break and comparison of the shelf and deep sea ecodynamics
M. Gr????goire,J. M. Beckers
Biogeosciences Discussions , 2004,
Abstract: A 6-compartment biogeochemical model of nitrogen cycling and plankton productivity has been coupled with a 3D general circulation model in an enclosed environment (the Black Sea) so as to quantify and compare, on a seasonal and annual scale, the typical internal biogeochemical functioning of the shelf and of the deep sea as well as to estimate the nitrogen and water exchanges at the shelf break. Model results indicate that the annual nitrogen net export to the deep sea roughly corresponds to the annual load of nitrogen discharged by the rivers on the shelf. The model estimated vertically integrated gross annual primary production is 130 g C m-2yr-1 for the whole basin, 220 g C m-2yr-1 for the shelf and 40 g C m-2yr-1 for the central basin. In agreement with sediment trap observations, model results indicate a rapid and efficient recycling of particulate organic matter in the sub-oxic portion of the water column (60-80m) of the open sea. More than 95% of the PON produced in the euphotic layer is recycled in the upper 100m of the water column, 87% in the upper 80 m and 67% in the euphotic layer. The model estimates the annual export of POC towards the anoxic layer to 4 1010mol yr-1. This POC is definitely lost for the system and represents 2% of the annual primary production of the open sea.
The role of continental shelves in nitrogen and carbon cycling  [PDF]
K. Fennel
Ocean Science Discussions (OSD) , 2010,
Abstract: Continental shelves play a key role in the cycling of nitrogen and carbon. Here the physical transport and biogeochemical transformation processes affecting the fluxes into and out of continental shelf systems are reviewed, and their role in the global cycling of both elements is discussed. Uncertainties in observation-based estimates of nitrogen and carbon fluxes mostly result from uncertainties in the shelf-open ocean exchange of organic and inorganic matter, which is hard to quantify based on observations alone, but can be inferred from biogeochemical models. Model-based nitrogen and carbon budgets are presented for the Northwestern North Atlantic continental shelf. Results indicate that shelves are an important sink for fixed nitrogen and a source of alkalinity, but are not much more efficient in exporting organic carbon to the deep ocean than the adjacent open ocean for the shelf region considered.
Microbial nitrogen cycling on the Greenland Ice Sheet
J. Telling, M. Stibal, A. M. Anesio, M. Tranter, I. Nias, J. Cook, C. Bellas, G. Lis, J. L. Wadham, A. Sole, P. Nienow,A. Hodson
Biogeosciences (BG) & Discussions (BGD) , 2012,
Abstract: Nitrogen inputs and microbial nitrogen cycling were investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) during the main ablation season in summer 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes on Leverett Glacier, within 7.5 km of the ice sheet margin, suggested microbial uptake and ammonification respectively. Positive in situ acetylene assays indicated nitrogen fixation both in a debris-rich 100 m marginal zone and up to 5.7 km upslope on Leverett Glacier (with rates up to 16.3 μmoles C2H4 m 2 day 1). No positive acetylene assays were detected > 5.7 km into the ablation zone of the ice sheet. Potential nitrogen fixation only occurred when concentrations of dissolved and sediment-bound inorganic nitrogen were undetectable. Estimates of nitrogen fluxes onto the transect suggest that nitrogen fixation is likely of minor importance to the overall nitrogen budget of Leverett Glacier and of negligible importance to the nitrogen budget on the main ice sheet itself. Nitrogen fixation is however potentially important as a source of nitrogen to microbial communities in the debris-rich marginal zone close to the terminus of the glacier, where nitrogen fixation may aid the colonization of subglacial and moraine-derived debris.
Microbial nitrogen cycling on the Greenland Ice Sheet  [PDF]
J. Telling,M. Stibal,A. M. Anesio,M. Tranter
Biogeosciences Discussions , 2011, DOI: 10.5194/bgd-8-10423-2011
Abstract: Microbial nitrogen cycling was investigated along a 79 km transect into the Greenland Ice Sheet (GrIS) in early August 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt) in cryoconite holes within 7.5 km of the ice sheet margin suggested microbial uptake and ammonification respectively. Nitrogen fixation (<4.2 μmoles C2H4 m 2 day 1 to 16.3 μmoles C2H4 m 2 day 1) was active in some cryoconite holes at sites up to 5.7 km from the ice sheet margin, with nitrogen fixation inversely correlated to concentrations of inorganic nitrogen. There may be the potential for the zone of nitrogen fixation to progressively extend further into the interior of the GrIS as the melt season progresses as reserves of available nitrogen are depleted. Estimated annual inputs of nitrogen from nitrogen fixation along the transect were at least two orders of magnitude lower than inputs from precipitation, with the exception of a 100 m long marginal debris-rich zone where nitrogen fixation could potentially equal or exceed that of precipitation. The average estimated contribution of nitrogen fixation to the nitrogen demand of net microbial growth at sites along the transect ranged from 0% to 17.5%.
A study on nitrogen removal efficiency of Pseudomonas stutzeri strains isolated from an anaerobic/anoxic/oxic wastewater treatment process
Yi Wen, Y Ren, CH Wei, KY Li, FM Lin, XY Chen
African Journal of Biotechnology , 2010,
Abstract: In order to improve the nitrogen removal efficiency in an anaerobic/anoxic/oxic treatment plant, a strain with high nitrification and denitrification capability was isolated from a specific anaerobic/anoxic/oxic treatment process. The characteristics of isolate were experimentally analyzed. By using the nitrogen balance method, the total nitrogen loss was calculated to be 40.1% (w/w) when the carbon source was citric acid with a C/N ratio of 5. Meanwhile, the isolated strain was identified by 16S rDNA to be a Pseudomonas stutzeri with a similarity of 99%. Varying the initial TN, the C/N, the pH value and the ambient temperature in the reaction system, the efficiency of nitrogen removal was studied. The results showed that the highest efficiency occurred when the C/N was 12, the pH value was 7 and the temperature was 32°C. The results were also compared to the practically monitoring data coming with a good agreement. Consequently, it is viable to improve the nitrogen removal efficiency by varying the reaction conditions.
Biogenic nitrogen gas production at the oxic–anoxic interface in the Cariaco Basin, Venezuela
F. A. C. Le Moigne, M. Boye, A. Masson, R. Corvaisier, E. Grossteffan, A. Guéneugues,P. Pondaven
Biogeosciences (BG) & Discussions (BGD) , 2013,
Abstract: Meridional and vertical distributions of several biogeochemical parameters were studied along a section in the southeastern Atlantic and the Southern Ocean south of South Africa during the austral summer 2008 of the International Polar Year to characterize the biogeochemical provinces and to assess the seasonal net diatom production. Based on analyses of macro-nutrients, ammonium (NH4), chlorophyll a, (Chl a), phaeopigments, biogenic silica (BSi), particulate inorganic carbon (PIC), and particulate organic carbon and nitrogen (POC and PON, respectively), four biogeochemical domains were distinguished along the section: the subtropical Atlantic, the confluence zone of the subtropical and subantarctic domains, the Polar Frontal Zone (PFZ) in the Antarctic Circumpolar Current (ACC), and the north-eastern branch of the Weddell Gyre. The subtropical region displayed extremely low nutrient concentrations featuring oligotrophic conditions, and sub-surface maxima of Chl a and phaeopigments never exceeded 0.5 μg L 1 and 0.25 μg L 1, respectively. The anticyclonic and cyclonic eddies crossed in the Cape Basin were characterized by a deepening and a rise, respectively, of the nutrients isoclines. The confluence zone of the subtropical domain and the northern side of the ACC within the subantarctic domain displayed remnant nitrate and phosphate levels, whereas silicate concentrations kept to extremely low levels. In this area, Chl a level of 0.4–0.5 μg L 1 distributed homogenously within the mixed layer, and POC and PON accumulated to values up to 10 μM and 1.5 μM, respectively, indicative of biomass accumulation along the confluence zone during the late productive period. In the ACC domain, the Polar Frontal Zone was marked by a post-bloom of diatoms that extended beyond the Polar Front (PF) during this late summer condition, as primarily evidenced by the massive depletion of silicic acid in the surface waters. The accumulation of NH4 to values up to 1.25 μM at 100 m depth centred on the PF and the accumulation of BSi up to 0.5 μM in the surface waters of the central part of the PFZ also featured a late stage of the seasonal diatom bloom. The silica daily net production rate based on the seasonal depletion of silicic acid was estimated to be 11.9 ± 6.5 mmol m 2 d 1 in the domain of the vast diatom post-bloom, agreeing well with the previously recorded values in this province. The Weddell Gyre occasionally displayed relative surface depletion of silicic acid, suggesting a late stage of a relatively minor diatom bloom possibly driven by iceberg drifting releases of iron. In this domain the estimated range of silica daily net production rate (e.g. 21.1 ± 8.8 mmol m 2 d 1) is consistent with previous studies, but was not significantly higher than that in the Polar Front region.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.