oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Anaerobic digestion of cow dung for biogas production  [PDF]
Baba Shehu Umar Ibn Abubakar,Nasir Ismail
Journal of Engineering and Applied Sciences , 2012,
Abstract: The effectiveness of cow dung for biogas production was investigated, using a laboratory scale 10L bioreactor working in batch and semi-continuous mode at 53oC. Anaerobic digestion seemed feasible with an organic loading of up to 1.7 kg volatile solids (VS)/L d and an HRT of 10 days during the semi-continuous operation. The averaged cumulative biogas yield and methane content observed was 0.15 L/kg VS added and 47 % respectively. The TS, VS and COD removals amounted to 49%, 47% and 48.5%, respectively. The results of the VS/TS ratio showed very small variation, which denote adequate mixing performance. However there was some evidence of ammonia inhibition probably due to the uncontrolled pH employed. The data obtained establish that cow dung is an effective feedstock for biogas production achieving high cumulative biogas yield with stable performance. The future work will be carried out to study the effect of varying organic loading rate on anaerobic digestion of cow dung in a semi-continuous mode.
Comparative Study on the Rates of Production of Biogas from Organic Substrates  [PDF]
Wuraola A. Raji, Yakubu Yerima, P. T. Alufar
Energy and Power Engineering (EPE) , 2018, DOI: 10.4236/epe.2018.1012032
Abstract: Interest in renewable energy production and in reduction of the greenhouse gas emissions associated with fossil fuels has made anaerobic digestion of organic wastes an attractive option for alternate means of producing biogas (methane). In this present work, investigation was carried out on the unused energy present in cooked left-over waste rice as food waste and the amount of methane produced compared to cow dung and co-substrate used as feed stocks. The experiments were conducted batch wisely at mesophilic temperature with the varying percentage total solid (TS) and volatile solid (VS) calculated. It was observed that the volume of methane produced increased with increasing percentage total solid and percentage volatile solid during the 20 day HRT digestion period. The optimum quantity of methane gas produced was 57,306 ml at the highest 92.1% VS and 12.1% TS from food waste (oryza sativa), followed by the co-substrate 12,190 ml and cow dung 9802 ml. The high nutritional content and calorific value present in kitchen food waste contributed to its overall yield within the shortest time interval which indicates a rapid rise through the exponential phase of microbial growth rate. Furthermore, the results obtained reveal that food waste especially cooked left-over rice should be considered as a viable feed stock for biogas production in an anaerobic digestion process.
Effect of Waste Paper on Biogas Production from Co-digestion of Cow Dung and Water Hyacinth in Batch Reactors
OIY Momoh, LI Nwaogazie
Journal of Applied Sciences and Environmental Management , 2007,
Abstract: The effect of waste paper on biogas production from the co-digestion of fixed amount of cow dung and water hyacinth was studied at room temperature in five batch reactor for over 60 days. Waste paper addition was varied for a fixed amount of cow dung and water hyacinth until maximum biogas production was achieved. Biogas production was measured indirectly by water displacement method. The production of biogas showed a parabolic relationship as the amount of waste paper (g) increased with a goodness of fit of 0.982. Maximum biogas volume of 1.11liters was observed at a waste paper amount of 17.5g which corresponded to 10.0% total solids of the biomass in 250ml solution. Thus, an optimum waste paper amount of 17.5g needs to combine with 5g of cow dung and 5g of water hyacinth in 250ml of water for maximum biogas production. Similar equivalents in kilograms and tonnes can be utilized in large-scale production of biogas which can provide decentralized source of fuel for university laboratories and also local supply of energy for electricity production. Also, the air pollution problems associated with open burning of waste papers can be eliminated. The biogas process has established to be cheap and practically feasible.
Effect of Waste Paper on Biogas Production from Co-digestion of Cow Dung and Water Hyacinth in Batch Reactors
OLY Momoh, LI Nwaogazie
Journal of Applied Sciences and Environmental Management , 2008,
Abstract: The effect of waste paper on biogas production from the co-digestion of fixed amount of cow dung and water hyacinth was studied at room temperature in five batch reactor for over 60 days. Waste paper addition was varied for a fixed amount of cow dung and water hyacinth until maximum biogas production was achieved. Biogas production was measured indirectly by water displacement method. The production of biogas showed a parabolic relationship as the amount of waste paper (g) increased with a goodness of fit of 0.982. Maximum biogas volume of 1.11liters was observed at a waste paper amount of 17.5g which corresponded to 10.0% total solids of the biomass in 250ml solution. Thus, an optimum waste paper amount of 17.5g needs to combine with 5g of cow dung and 5g of water hyacinth in 250ml of water for maximum biogas production. Similar equivalents in kilograms and tonnes can be utilized in large-scale production of biogas which can provide decentralized source of fuel for university laboratories and also local supply of energy for electricity production. Also, the air pollution problems associated with open burning of waste papers can be eliminated. The biogas process has established to be cheap and practically feasible
Production of Biogas from Co-Digestion of Cow Dung, Saw Dust and Maize Husk  [PDF]
Akindele Oyetunde Okewale, Felix Omoruwou, Christiana Edward Anih
Advances in Chemical Engineering and Science (ACES) , 2018, DOI: 10.4236/aces.2018.83008
Abstract: The co-digestion of cow dung, with maize husk for biogas production at laboratory scale was investigated. The study was carried out at a temperature range of??24°C - 30°C and pH range of 5.5 - 6.5 for a period of 60 days with a total solid concentration of 7.4% in the digester sample (fermentation slurry). Water displacement method was used to collect the biogas produced which was subsequently measured. 444.8 mL was the cumulative biogas yield at the end of 60 days retention time in the digester 1, which comprised of cow dung, maize husk, and water. Digester 2, which is made up of sawdust, cow dung, and water produced negligible biogas at the end of 60 days of the experiment. X-RF analysis revealed high presence of elements like silica, aluminium oxides, and aluminium oxides in cow dung, maize husk, and sawdust respectively. The preponderance of alkanes and methyl group inmaize husk makes it to produce biogas compared to saw dust as shown by the Fourier transform infrared spectroscopy (FTIR) that was carried out to identify the various functional groups. The potential of maize husk to produced biogas was also established. The kinetic modeling shows that there was an increase in biogas yield as the retention time increases as depicted by the linear model.
Development of a Batch-Type Biogas Digester Using a Combination of Cow Dung, Swine Dung and Poultry Dropping  [PDF]
Olawale O. Olanrewaju, Obafemi O. Olubanjo
International Journal of Clean Coal and Energy (IJCCE) , 2019, DOI: 10.4236/ijcce.2019.82002
Abstract: The overdependence on crude oil in African countries warrants the need for alternative sources of energy. A 56-litre-capacity biogas digester was designed, fabricated and evaluated. Investigations were made into the production of biogas from the mixture of cow dung, swine dung and poultry dropping. Standard equations and models were used in the design of the components of the manually operated digester. The digester temperature, ambient temperature and pH were monitored during the experiment. The proximate analysis showed that volatile solid, total solid and moisture content for the mixed substrates at the initial stage were: 64.7%, 83.5% and 13.5% respectively. Similarly, at the digestion stage, the volatile solid, total solid and moisture content were: 54.1%, 22.6% and 74.4% respectively. Advancement of decomposition leads to gradual increasing pH value from 7.2 to 7.4, which indicates the stability of organic matter. The moisture content on a wet basis was initially 13.5%. This value latter increased to 74.4%. On the average, 15 kg of mixed substrates with 25 litres of impure water produced biogas within 25 days of digestion. The gas produced from mixed substrates became flammable with blue flame after 16 days of production, indicating that the ratio of methane gas generated with the three mixtures of fresh animal waste was higher than other gases produced.
Potentials for Biogas Production in Anambra State of Nigeria Using Cow Dung and Poultry Droppings  [PDF]
C. E. Umeghalu., E. C. Chukwuma, I. F. Okonkwo and S. O. Umeh
International Journal of Veterinary Science , 2012,
Abstract: Preliminary investigation of the major abattoirs and poultry farms in Anambra State was undertaken to determine the quantity of cow dung and poultry dropping generation with respect to biogas production. The study showed that about 15563 kg (15.6 tons) of fresh cow manure and about 2012 kg (2.01 tons) are produced daily in the state. These are sufficient to support biogas production in the state. Investigation shows that most of these manures are not properly managed resulting to environmental pollution. Result shows that only negligible proportion of these manures are used as manure for vegetable crops and feed stock for fish farming. Thus, there is need to popularize biogas technology which is a cheap and renewable source of energy whose effluent is a good fertilizer for crop growing.
Biogas Production from the Co-Digestion of Cornstalks with Cow Dung and Poultry Droppings  [PDF]
I. J. Ona, S. M. Loya, H. O. Agogo, M. S. Iorungwa, R. Ogah
Journal of Agricultural Chemistry and Environment (JACEN) , 2019, DOI: 10.4236/jacen.2019.83012
Abstract: The Anaerobic digestion of Corn Stalk (CS) with Cow Dung (CD) and Poultry Droppings (PD) was investigated. Batch mono-digestion and Co-digestion experiments were performed with initial total solid loading of 37.5%. The main objective of this work was to investigate the biogas yield at different CS to CD ratios and CS to PD ratios. Results show that the highest Cumulative Gas Yield (CGY) of 6833 mL/g of biomass was achieved in 21 days for CS-CD ratio of 2:1. Similarly high CGY of 6107 mL/g, 6100 mL/g and 5333 mL/g were obtained for CS-PD ratio of 2:1, CS-CD ratio of 1:1 and CS-PD ratio of 1:1 respectively. It is concluded that co-digestion of Cow dung or poultry droppings is beneficial for improving bio-digestibility and Biogas yield from corn stalk. The results of this work provide useful information to improve the efficiency of co-digestion of CS with CD and PD under anaerobic conditions.
Empirical Study on Factors Affecting Biogas Production  [PDF]
Ravita D. Prasad
ISRN Renewable Energy , 2012, DOI: 10.5402/2012/136959
Abstract: In Fiji, biogas has a huge potential to be one of the energy providers for cooking in rural areas but currently its use is very minimal. Main component of biogas is methane which releases energy when combusted. This paper mainly presents the factors that affect biogas production using experimental study. The first section presents an overview on what is biogas, types of biogas digesters present, and some background on the current use of biogas in Fiji. The second section of the paper describes the methodology in brief of the experimental work carried out. The third section of the paper presents results that were achieved in the experiment, discussion, and interpretation of the results and how Fiji could benefit from this study. It was evident that cow + Pig mix manure produces high rate of biogas at mesophilic temperature and cow dung manure is best for biogas production at room temperature. 1. Introduction According to Prasad, in Fiji 70% of total primary energy used comes from biomass and petroleum products [1]. Biogas which is part of biomass energy is used for cooking purpose in Fiji. However, its use is relatively small compared to energy providers such as petroleum products, electricity from diesel generators and hydro power systems, and butane gas (known as “Fiji gas”). Prasad also states that domestic cooking in rural areas in Fiji mainly uses mainly wood [1]. This, however, contributes to the health issues for women due to inhalation of smoke while cooking. Biogas is one of the alternative energy fuels to use for cooking. Arthur et al. argues that biogas is a clean fuel since it burns without leaving soot or particulate matter and it is lighter in terms of carbon chain length and, hence, less amount of carbon dioxide is released into the atmosphere during combustion [2]. According to Tudreu at Fiji Department of Energy, there are currently nine operational biogas plants in Fiji [3]. There are few biogas digesters which are already commissioned but the piping from digester to household is left to be done. Also, there are other biogas plants in some other areas but they are not operational now due to lack of knowledge in maintaining a digester, structural failure digesters, and lack of feedstock for daily input in digesters. Anaerobic condition is needed for biogas production where methanogenic bacteria act on animal dung or plant waste. According to Energy Resources Development Series, biogas is composed of 50–70% methane (CH4), 30–40% carbon dioxide (CO2), 5–10% hydrogen (H2), 1-2% nitrogen (N2), and traces of water vapour and hydrogen sulphide
UTILIZATION OF POULTRY, COW AND KITCHEN WASTES FOR BIOGAS PRODUCTION: A COMPARATIVE ANALYSIS
S.J. Ojolo,S.A. Oke,K. Animasahun,B.K. Adesuyi
Iranian Journal of Environmental Health Science & Engineering , 2007,
Abstract: The amount of solid wastes generated in developing countries such as Nigeria has steadily increased over the last two decades as a result of population explosion and continuous growth of industries and agricultural practices. In agriculture, particularly cattle rearing, large quantities of cow wastes are generated, which could be used as biogas inputs to compliment the fuel usage alternative. In addition, a large number of families generate heavy wastes in the kitchen on a daily basis, which could be converted to economic benefits. In this work, a comparative study of biogas production from poultry droppings, cattle dung, and kitchen wastes was conducted under the same operating conditions. 3kg of each waste was mixed with 9L of water and loaded into the three waste reactors. Biogas production was measured for a period of 40 days and at an average temperature of 30.5oC. Biogas production started on the 7th day, and attained maximum value on the 14th days for reactor 1. Production reached its peak on the 14th day with 85′10-3dm3 of gas produced in reactor 2. For reactor 3, biogas production started on the 8th day and production reached a peak value on the 14th day. The average biogas production from poultry droppings, cow dung and kitchen waste was 0.0318dm3/day, 0.0230dm3/day and 0.0143dm3/day, respectively. It is concluded that the wastes can be managed through conversion into biogas, which is a source of income generation for the society.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.