Abstract:
This paper gives a brief review on the recent work on fractional Klein-Gordon fields, in particular on the Casimir effect associated to fractional Klein-Gordon fields in various geometries and boundary conditions. New results on Casimir piston due to a fractional Klein-Gordon massive field are given.

Abstract:
In this paper we discuss some exact results related to the fractional Klein--Gordon equation involving fractional powers of the D'Alembert operator. By means of a space-time transformation, we reduce the fractional Klein--Gordon equation to a fractional hyper-Bessel-type equation. We find an exact analytic solution by using the McBride theory of fractional powers of hyper-Bessel operators. A discussion of these results within the framework of linear dispersive wave equations is provided. We also present exact solutions of the fractional Klein-Gordon equation in the higher dimensional cases. Finally, we suggest a method of finding travelling wave solutions of the nonlinear fractional Klein-Gordon equation with power law nonlinearities.

Abstract:
This paper deals with one type of sine-Gordon with self-consistent source (SGESCS). The explicit exact solution of the equation is investigated using a generalized binary Darboux transformation. The complexiton solution for the equation is finally obtained.

Abstract:
This paper presents finite-velocity random motions driven by fractional Klein-Gordon equations of order $\alpha \in (0,1]$. A key tool in the analysis is played by the McBride's theory which converts fractional hyper-Bessel operators into Erdelyi-Kober integral operators. Special attention is payed to the fractional telegraph process whose space-dependent distribution solves a non-homogeneous fractional Klein-Gordon equation. The distribution of the fractional telegraph process for $\alpha = 1$ coincides with that of the classical telegraph process and its driving equation converts into the homogeneous Klein-Gordon equation. Fractional planar random motions at finite velocity are also investigated, the corresponding distributions obtained as well as the explicit form of the governing equations. Fractionality is reflected into the underlying random motion because in each time interval a binomial number of deviations $B(n,\alpha)$ (with uniformly-distributed orientation) are considered. The parameter $n$ of $B(n,\alpha)$ is itself a random variable with fractional Poisson distribution, so that fractionality acts as a subsampling of the changes of directions. Finally the behaviour of each coordinate of the planar motion is examined and the corresponding densities obtained. Extensions to $N$-dimensional fractional random flights are envisaged as well as the fractional counterpart of the Euler-Poisson-Darboux equation to which our theory applies.

Abstract:
The reliable treatment of homotopy perturbation method (HPM) is applied to solve the Klein-Gordon partial differential equation of arbitrary (fractional) orders. This algorithm overcomes the difficulty that arises in calculating complicated integrals when solving nonlinear equations. Some numerical examples are presented to illustrate the efficiency of this technique.

Abstract:
Relying on the variational principle, it is proved that new contradictions emerge from an analysis of the Lagrangian density of the Klein-Gordon field: normalization problems arise and interaction with external electromagnetic fields cannot take place. By contrast, the Dirac equation is free of these problems. Other inconsistencies arise if the Klein-Gordon field is regarded as a classical field.

Abstract:
We prove peeling estimates for the small data solutions of the Maxwell Klein Gordon equations with non-zero charge and with a non-compactly supported scalar field, in $(3+1)$ dimensions. We obtain the same decay rates as in an earlier work by Lindblad and Sterbenz, but giving a simpler proof. In particular we dispense with the fractional Morawetz estimates for the electromagnetic field, as well as certain space-time estimates. In the case that the scalar field is compactly supported we can avoid fractional Morawetz estimates for the scalar field as well. All of our estimates are carried out using the double null foliation and in a gauge invariant manner.

Abstract:
In this article, we derive the scalar parametrized Klein-Gordon equation from the formal information theory framework. The least biased probability distribution is obtained, and the scalar equation is recast in terms of a Fokker-Planck equation in terms of the imaginary time, or a Schroedinger equation for the proper time. This method yields the Green's function parametrized by an evolution parameter. The derivation can then allow the use of potentials as constraints along with the Hamiltonian or moments of the evolution. The information theoretic, analogously the maximum entropy method, also allows one to examine the possibility of utilizing generalized and non-extensive statistics in the derivation. This approach yields non-linear evolution in the parametrized Klein-Gordon partial differential equations. Furthermore, we examine the Klein-Gordon equation in curved space-time, and we compare our results to the results of Schwinger and Dewitt obtained from path integral approaches.