oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment  [PDF]
Y. Abe,C. Aberle,T. Akiri,J. C. dos Anjos,F. Ardellier,A. F. Barbosa,A. Baxter,M. Bergevin,A. Bernstein,T. J. C. Bezerra,L. Bezrukhov,E. Blucher,M. Bongrand,N. S. Bowden,C. Buck,J. Busenitz,A. Cabrera,E. Caden,L. Camilleri,R. Carr,M. Cerrada,P. -J. Chang,P. Chimenti,T. Classen,A. P. Collin,E. Conover,J. M. Conrad,S. Cormon,J. I. Crespo-Anadón,M. Cribier,K. Crum,A. Cucoanes,M. V. D'Agostino,E. Damon,J. V. Dawson,S. Dazeley,M. Dierckxsens,D. Dietrich,Z. Djurcic,M. Dracos,V. Durand,Y. Efremenko,M. Elnimr,Y. Endo,A. Etenko,E. Falk,M. Fallot,M. Fechner,F. von Feilitzsch,J. Felde,S. M. Fernandes,D. Franco,A. J. Franke,M. Franke,H. Furuta,R. Gama,I. Gil-Botella,L. Giot,M. G?ger-Neff,L. F. G. Gonzalez,M. C. Goodman,J. TM. Goon,D. Greiner,B. Guillon,N. Haag,C. Hagner,T. Hara,F. X. Hartmann,J. Hartnell,T. Haruna,J. Haser,A. Hatzikoutelis,T. Hayakawa,M. Hofmann,G. A. Horton-Smith,M. Ishitsuka,J. Jochum,C. Jollet,C. L. Jones,F. Kaether,L. Kalousis,Y. Kamyshkov,D. M. Kaplan,T. Kawasaki,G. Keefer,E. Kemp,H. de Kerret,Y. Kibe,T. Konno,D. Kryn,M. Kuze,T. Lachenmaier,C. E. Lane,C. Langbrandtner,T. Lasserre,A. Letourneau,D. Lhuillier,H. P. Lima Jr,M. Lindner,Y. Liu,J. M. López-Castan?,J. M. LoSecco,B. K. Lubsandorzhiev,S. Lucht,D. McKee,J. Maeda,C. N. Maesano,C. Mariani,J. Maricic,J. Martino,T. Matsubara,G. Mention,A. Meregaglia,T. Miletic,R. Milincic,A. Milzstajn,H. Miyata,D. Motta,Th. A. Mueller,Y. Nagasaka,K. Nakajima,P. Novella,M. Obolensky,L. Oberauer,A. Onillon,A. Osborn,I. Ostrovskiy
Statistics , 2011, DOI: 10.1103/PhysRevLett.108.131801
Abstract: The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 $\pm$ 0.016 (stat) $\pm$ 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GW$_{th}$ reactors. The results were obtained from a single 10 m$^3$ fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 $\pm$ 0.041 (stat) $\pm$ 0.030 (syst), or, at 90% CL, 0.015 $<$ \sang $\ <$ 0.16.
First Double-Chooz Results and the Reactor Antineutrino Anomaly  [PDF]
Carlo Giunti,Marco Laveder
Physics , 2011, DOI: 10.1103/PhysRevD.85.031301
Abstract: We investigate the possible effects of short-baseline antinu_e disappearance implied by the reactor antineutrino anomaly on the Double-Chooz determination of theta_{13} through the normalization of the initial antineutrino flux with the Bugey-4 measurement. We show that the effects are negligible and the value of theta_{13} obtained by the Double-Chooz collaboration is accurate only if Delta m^2_{41} is larger than about 3 eV^2. For smaller values of Delta m^2_{41} the short-baseline oscillations are not fully averaged at Bugey-4 and the uncertainties due to the reactor antineutrino anomaly can be of the same order of magnitude of the intrinsic Double-Chooz uncertainties.
Search for neutrino-antineutrino oscillations with a reactor experiment  [PDF]
J. S. Diaz,T. Katori,J. Spitz,J. M. Conrad
Physics , 2013, DOI: 10.1016/j.physletb.2013.10.058
Abstract: The disappearance of reactor antineutrinos in the Double Chooz experiment is used to investigate the possibility of neutrino-antineutrino oscillations arising due to the breakdown of Lorentz invariance. We find no evidence for this phenomenon and set the first limits on 15 coefficients describing neutrino-antineutrino mixing within the framework of the Standard-Model Extension.
Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment  [PDF]
Soo-Bong Kim
Physics , 2012, DOI: 10.1103/PhysRevLett.108.191802
Abstract: The RENO experiment has observed the disappearance of reactor electron antineutrinos, consistent with neutrino oscillations, with a significance of 4.9 standard deviations. Antineutrinos from six 2.8 GW$_{th}$ reactors at the Yonggwang Nuclear Power Plant in Korea, are detected by two identical detectors located at 294 m and 1383 m, respectively, from the reactor array center. In the 229 day data-taking period between 11 August 2011 and 26 March 2012, the far (near) detector observed 17102 (154088) electron antineutrino candidate events with a background fraction of 5.5% (2.7%). The ratio of observed to expected numbers of antineutrinos in the far detector is $0.920 \pm 0.009({\rm stat.}) \pm 0.014({\rm syst.})$. From this deficit, we determine $\sin^2 2 \theta_{13} = 0.113 \pm 0.013({\rm stat.}) \pm 0.019({\rm syst.})$ based on a rate-only analysis.
Double Chooz: Optimizing CHOOZ for a possible theta 13 measurement  [PDF]
S. A. Dazeley,for the Double Chooz Collaboration
Physics , 2005,
Abstract: The proposed Double Chooz theta 13 experiment is described. Double Chooz will be an optimized reactor disappearance experiment similar to the original CHOOZ. The optimization includes an increase in the signal to noise by increasing the target volume to twice the original CHOOZ, reducing singles background with a non-scintillating oil buffer region around the target and carefully controlling systematic uncertainties by measuring the electron antineutrino flux of the source with a near detector. The Double Chooz far detector will be situated in the same cavern as CHOOZ but will detect ~50000 electron antineutrinos in three years of operation. We estimate a systematic uncertainty of 0.6%, and a reduction of the upper limit on theta 13 to 5 degrees.
First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment  [PDF]
Double Chooz Collaboration,Y. Abe,C. Aberle,J. C. dos Anjos,M. Bergevin,A. Bernstein,T. J. C. Bezerra,L. Bezrukhov,E. Blucher,N. S. Bowden,C. Buck,J. Busenitz,A. Cabrera,E. Caden,L. Camilleri,R. Carr,M. Cerrada,P. -J. Chang,P. Chimenti,T. Classen,A. P. Collin,E. Conover,J. M. Conrad,J. I. Crespo-Anadón,K. Crum,A. Cucoanes,M. V. D'Agostino,E. Damon,J. V. Dawson,S. Dazeley,D. Dietrich,Z. Djurcic,M. Dracos,V. Durand,J. Ebert,Y. Efremenko,M. Elnimr,A. Erickson,M. Fallot,M. Fechner,F. von Feilitzsch,J. Felde,V. Fischer,D. Franco,A. J. Franke,M. Franke,H. Furuta,R. Gama,I. Gil-Botella,L. Giot,M. G?ger-Neff,L. F. G. Gonzalez,M. C. Goodman,J. TM. Goon,D. Greiner,N. Haag,S. Habib,C. Hagner,T. Hara,F. X. Hartmann,J. Haser,A. Hatzikoutelis,T. Hayakawa,M. Hofmann,G. A. Horton-Smith,M. Ishitsuka,J. Jochum,C. Jollet,C. L. Jones,F. Kaether,L. N. Kalousis,Y. Kamyshkov,D. M. Kaplan,T. Katori,T. Kawasaki,G. Keefer,E. Kemp,H. de Kerret,T. Konno,D. Kryn,M. Kuze,T. Lachenmaier,C. E. Lane,T. Lasserre,A. Letourneau,D. Lhuillier,H. P. Lima Jr,M. Lindner,J. M. López-Casta?o,J. M. LoSecco,B. K. Lubsandorzhiev,S. Lucht,D. McKee,J. Maeda,C. N. Maesano,C. Mariani,J. Maricic,J. Martino,T. Matsubara,G. Mention,A. Meregaglia,M. Meyer,T. Miletic,R. Milincic,H. Miyata,Th. A. Mueller,Y. Nagasaka,K. Nakajima,P. Novella,M. Obolensky,L. Oberauer,A. Onillon,A. Osborn,I. Ostrovskiy,C. Palomares,I. M. Pepe,S. Perasso,P. Perrin,P. Pfahler,A. Porta,W. Potzel,G. Pronost,J. Reichenbacher,B. Reinhold,A. Remoto
Physics , 2012, DOI: 10.1103/PhysRevD.86.112009
Abstract: We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension (SME), we set the first limits on fourteen Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor.
Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment  [PDF]
RENO Collaboration
Physics , 2015,
Abstract: The RENO experiment has analyzed about 500 live days of data to observe an energy dependent disappearance of reactor $\overline{\nu}_e$ by comparison of their prompt signal spectra measured in two identical near and far detectors. In the period between August 2011 and January 2013, the far (near) detector observed 31541 (290775) electron antineutrino candidate events with a background fraction of 4.9\% (2.8\%). The measured prompt spectra show an excess of reactor $\overline{\nu}_e$ around 5 MeV relative to the prediction from a most commonly used model. A clear energy and baseline dependent disappearance of reactor $\overline{\nu}_e$ is observed in the deficit of the observed number of $\overline{\nu}_e$. Based on the measured far-to-near ratio of prompt spectra, we obtain $\sin^2 2 \theta_{13} = 0.082 \pm 0.009({\rm stat.}) \pm 0.006({\rm syst.})$ and $|\Delta m_{ee}^2| =[2.62_{-0.23}^{+0.21}({\rm stat.}) _{-0.13}^{+0.12}({\rm syst.})]\times 10^{-3}$~eV$^2$.
Observation of electron antineutrino disappearance by the Daya Bay Reactor Neutrino Experiment  [PDF]
Elizabeth Worcester for the Daya Bay Collaboration
Statistics , 2013,
Abstract: This presentation describes a measurement of the neutrino mixing parameter, sin^2(2theta_13), from the Daya Bay Reactor Neutrino Experiment. Disappearance of electron antineutrinos at a distance of ~2 km from a set of six reactors, where the reactor flux is constrained by near detectors, has been clearly observed. The result, based on the ratio of observed to expected rate of antineutrinos, using 139 days of data taken between December 24, 2011 and May 11, 2012, is sin^2(2theta_13) = 0.089 +/- 0.010(stat.) +/- 0.005(syst.). Improvements in sensitivity from inclusion of additional data, spectral analysis, and improved calibration are expected in the future.
The Double Chooz reactor neutrino experiment  [PDF]
I. Gil-Botella
Physics , 2007, DOI: 10.1088/1742-6596/110/8/082007
Abstract: The Double Chooz reactor neutrino experiment will be the next detector to search for a non vanishing theta13 mixing angle with unprecedented sensitivity, which might open the way to unveiling CP violation in the leptonic sector. The measurement of this angle will be based in a precise comparison of the antineutrino spectrum at two identical detectors located at different distances from the Chooz nuclear reactor cores in France. Double Chooz is particularly attractive because of its capability to measure sin2(2theta13) to 3 sigmas if sin2(2theta13) > 0.05 or to exclude sin2(2theta13) down to 0.03 at 90% C.L. for Dm2 = 2.5 x 10-3 eV2 in three years of data taking with both detectors. The construction of the far detector starts in 2008 and the first neutrino results are expected in 2009. The current status of the experiment, its physics potential and design and expected performance of the detector are reviewed.
Comment on Phys. Rev. Lett. 108, 191802 (2012): "Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment"  [PDF]
Thierry Lasserre,Guillaume Mention,Michel Cribier,Antoine Collin,Vincent Durand,Vincent Fischer,Jonathan Gaffiot,David Lhuillier,Alain Letourneau,Matthieu Vivier
Statistics , 2012,
Abstract: The RENO experiment recently reported the disappearance of reactor electron antineutrinos consistent with neutrino oscillations, with a significance of 4.9 standard deviations. The published ratio of observed to expected number of antineutrinos in the far detector is R=0.920 +-0.009(stat.) +-0.014(syst.) and corresponds to sin^2 2theta13 = 0.113 +-0.013(stat.) +-0.019(syst), using a rate-only analysis. In this letter we reanalyze the data and we find a ratio R=0.903 +-0.01(stat.), leading to sin^2 2theta13 = 0.135. Moreover we show that the sin^2 2theta13 measurement still depend of the prompt high energy bound beyond 4 MeV, contrarily to the expectation based on neutrino oscillation.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.