oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Motifs in Brain Networks  [PDF]
Olaf Sporns,Rolf K?tter
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.0020369
Abstract: Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information.
Motifs in Brain Networks  [PDF]
Olaf Sporns ,Rolf K?tter
PLOS Biology , 2004, DOI: 10.1371/journal.pbio.0020369
Abstract: Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information.
Networks of motifs from sequences of symbols  [PDF]
Roberta Sinatra,Daniele Condorelli,Vito Latora
Physics , 2010, DOI: 10.1103/PhysRevLett.105.178702
Abstract: We introduce a method to convert an ensemble of sequences of symbols into a weighted directed network whose nodes are motifs, while the directed links and their weights are defined from statistically significant co-occurences of two motifs in the same sequence. The analysis of communities of networks of motifs is shown to be able to correlate sequences with functions in the human proteome database, to detect hot topics from online social dialogs, to characterize trajectories of dynamical systems, and might find other useful applications to process large amount of data in various fields.
On the motifs distribution in random hierarchical networks  [PDF]
V. A. Avetisov,S. K. Nechaev,A. B. Shkarin
Quantitative Biology , 2010, DOI: 10.1016/j.physa.2010.09.016
Abstract: The distribution of motifs in random hierarchical networks defined by nonsymmetric random block--hierarchical adjacency matrices, is constructed for the first time. According to the classification of U. Alon et al of network superfamilies by their motifs distributions, our artificial directed random hierarchical networks falls into the superfamily of natural networks to which the class of neuron networks belongs. This is the first example of ``handmade'' networks with the motifs distribution as in a special class of natural networks of essential biological importance.
Information content of colored motifs in complex networks  [PDF]
Christoph Adami,Jifeng Qian,Matthew Rupp,Arend Hintze
Physics , 2011, DOI: 10.1162/artl_a_00045
Abstract: We study complex networks in which the nodes of the network are tagged with different colors depending on the functionality of the nodes (colored graphs), using information theory applied to the distribution of motifs in such networks. We find that colored motifs can be viewed as the building blocks of the networks (much more so than the uncolored structural motifs can be) and that the relative frequency with which these motifs appear in the network can be used to define the information content of the network. This information is defined in such a way that a network with random coloration (but keeping the relative number of nodes with different colors the same) has zero color information content. Thus, colored motif information captures the exceptionality of coloring in the motifs that is maintained via selection. We study the motif information content of the C. elegans brain as well as the evolution of colored motif information in networks that reflect the interaction between instructions in genomes of digital life organisms. While we find that colored motif information appears to capture essential functionality in the C. elegans brain (where the color assignment of nodes is straightforward) it is not obvious whether the colored motif information content always increases during evolution, as would be expected from a measure that captures network complexity. For a single choice of color assignment of instructions in the digital life form Avida, we find rather that colored motif information content increases or decreases during evolution, depending on how the genomes are organized, and therefore could be an interesting tool to dissect genomic rearrangements.
Motif-based communities in complex networks  [PDF]
Alex Arenas,Alberto Fernandez,Santo Fortunato,Sergio Gomez
Physics , 2007, DOI: 10.1088/1751-8113/41/22/224001
Abstract: Community definitions usually focus on edges, inside and between the communities. However, the high density of edges within a community determines correlations between nodes going beyond nearest-neighbours, and which are indicated by the presence of motifs. We show how motifs can be used to define general classes of nodes, including communities, by extending the mathematical expression of Newman-Girvan modularity. We construct then a general framework and apply it to some synthetic and real networks.
Subgraphs and network motifs in geometric networks  [PDF]
Shalev Itzkovitz,Uri Alon
Physics , 2004, DOI: 10.1103/PhysRevE.71.026117
Abstract: Many real-world networks describe systems in which interactions decay with the distance between nodes. Examples include systems constrained in real space such as transportation and communication networks, as well as systems constrained in abstract spaces such as multivariate biological or economic datasets and models of social networks. These networks often display network motifs: subgraphs that recur in the network much more often than in randomized networks. To understand the origin of the network motifs in these networks, it is important to study the subgraphs and network motifs that arise solely from geometric constraints. To address this, we analyze geometric network models, in which nodes are arranged on a lattice and edges are formed with a probability that decays with the distance between nodes. We present analytical solutions for the numbers of all 3 and 4-node subgraphs, in both directed and non-directed geometric networks. We also analyze geometric networks with arbitrary degree sequences, and models with a field that biases for directed edges in one direction. Scaling rules for scaling of subgraph numbers with system size, lattice dimension and interaction range are given. Several invariant measures are found, such as the ratio of feedback and feed-forward loops, which do not depend on system size, dimension or connectivity function. We find that network motifs in many real-world networks, including social networks and neuronal networks, are not captured solely by these geometric models. This is in line with recent evidence that biological network motifs were selected as basic circuit elements with defined information-processing functions.
Chaotic Motifs in Gene Regulatory Networks  [PDF]
Zhaoyang Zhang, Weiming Ye, Yu Qian, Zhigang Zheng, Xuhui Huang, Gang Hu
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0039355
Abstract: Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.
Assessing the Exceptionality of Coloured Motifs in Networks  [cached]
Schbath Sophie,Lacroix Vincent,Sagot Marie-France
EURASIP Journal on Bioinformatics and Systems Biology , 2009,
Abstract: Various methods have been recently employed to characterise the structure of biological networks. In particular, the concept of network motif and the related one of coloured motif have proven useful to model the notion of a functional/evolutionary building block. However, algorithms that enumerate all the motifs of a network may produce a very large output, and methods to decide which motifs should be selected for downstream analysis are needed. A widely used method is to assess if the motif is exceptional, that is, over- or under-represented with respect to a null hypothesis. Much effort has been put in the last thirty years to derive -values for the frequencies of topological motifs, that is, fixed subgraphs. They rely either on (compound) Poisson and Gaussian approximations for the motif count distribution in Erd s-Rényi random graphs or on simulations in other models. We focus on a different definition of graph motifs that corresponds to coloured motifs. A coloured motif is a connected subgraph with fixed vertex colours but unspecified topology. Our work is the first analytical attempt to assess the exceptionality of coloured motifs in networks without any simulation. We first establish analytical formulae for the mean and the variance of the count of a coloured motif in an Erd s-Rényi random graph model. Using simulations under this model, we further show that a Pólya-Aeppli distribution better approximates the distribution of the motif count compared to Gaussian or Poisson distributions. The Pólya-Aeppli distribution, and more generally the compound Poisson distributions, are indeed well designed to model counts of clumping events. Altogether, these results enable to derive a -value for a coloured motif, without spending time on simulations.
Scaling and precursor motifs in earthquake networks  [PDF]
Marco Baiesi
Physics , 2004, DOI: 10.1016/j.physa.2005.05.094
Abstract: A measure of the correlation between two earthquakes is used to link events to their aftershocks, generating a growing network structure. In this framework one can quantify whether an aftershock is close or far, from main shocks of all magnitudes. We find that simple network motifs involving links to far aftershocks appear frequently before the three biggest earthquakes of the last 16 years in Southern California. Hence, networks could be useful to detect symptoms typically preceding major events.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.