Abstract:
Valuation networks have been proposed as graphical representations of valuation-based systems (VBSs). The VBS framework is able to capture many uncertainty calculi including probability theory, Dempster-Shafer's belief-function theory, Spohn's epistemic belief theory, and Zadeh's possibility theory. In this paper, we show how valuation networks encode conditional independence relations. For the probabilistic case, the class of probability models encoded by valuation networks includes undirected graph models, directed acyclic graph models, directed balloon graph models, and recursive causal graph models.

Abstract:
We introduce a new class of graphical representations, expected utility networks (EUNs), and discuss some of its properties and potential applications to artificial intelligence and economic theory. In EUNs not only probabilities, but also utilities enjoy a modular representation. EUNs are undirected graphs with two types of arc, representing probability and utility dependencies respectively. The representation of utilities is based on a novel notion of conditional utility independence, which we introduce and discuss in the context of other existing proposals. Just as probabilistic inference involves the computation of conditional probabilities, strategic inference involves the computation of conditional expected utilities for alternative plans of action. We define a new notion of conditional expected utility (EU) independence, and show that in EUNs node separation with respect to the probability and utility subgraphs implies conditional EU independence.

Abstract:
Independence screening is a powerful method for variable selection for `Big Data' when the number of variables is massive. Commonly used independence screening methods are based on marginal correlations or variations of it. In many applications, researchers often have some prior knowledge that a certain set of variables is related to the response. In such a situation, a natural assessment on the relative importance of the other predictors is the conditional contributions of the individual predictors in presence of the known set of variables. This results in conditional sure independence screening (CSIS). Conditioning helps for reducing the false positive and the false negative rates in the variable selection process. In this paper, we propose and study CSIS in the context of generalized linear models. For ultrahigh-dimensional statistical problems, we give conditions under which sure screening is possible and derive an upper bound on the number of selected variables. We also spell out the situation under which CSIS yields model selection consistency. Moreover, we provide two data-driven methods to select the thresholding parameter of conditional screening. The utility of the procedure is illustrated by simulation studies and analysis of two real data sets.

Abstract:
This paper introduces the notions of independence and conditional independence in valuation-based systems (VBS). VBS is an axiomatic framework capable of representing many different uncertainty calculi. We define independence and conditional independence in terms of factorization of the joint valuation. The definitions of independence and conditional independence in VBS generalize the corresponding definitions in probability theory. Our definitions apply not only to probability theory, but also to Dempster-Shafer's belief-function theory, Spohn's epistemic-belief theory, and Zadeh's possibility theory. In fact, they apply to any uncertainty calculi that fit in the framework of valuation-based systems.

Abstract:
Possibilistic conditional independence is investigated: we propose a definition of this notion similar to the one used in probability theory. The links between independence and non-interactivity are investigated, and properties of these relations are given. The influence of the conjunction used to define a conditional measure of possibility is also highlighted: we examine three types of conjunctions: Lukasiewicz - like T-norms, product-like T-norms and the minimum operator.

Abstract:
Conditional independence tests (CI tests) have received special attention lately in Machine Learning and Computational Intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of Probabilistic Graphical Models (PGM)--which includes Bayesian Networks (BN) models--CI tests are especially important for the task of learning the PGM structure from data. In this paper, we propose the Full Bayesian Significance Test (FBST) for tests of conditional independence for discrete datasets. FBST is a powerful Bayesian test for precise hypothesis, as an alternative to frequentist's significance tests (characterized by the calculation of the \emph{p-value}).

Abstract:
We study notions of robustness of Markov kernels and probability distribution of a system that is described by $n$ input random variables and one output random variable. Markov kernels can be expanded in a series of potentials that allow to describe the system's behaviour after knockouts. Robustness imposes structural constraints on these potentials. Robustness of probability distributions is defined via conditional independence statements. These statements can be studied algebraically. The corresponding conditional independence ideals are related to binary edge ideals. The set of robust probability distributions lies on an algebraic variety. We compute a Gr\"obner basis of this ideal and study the irreducible decomposition of the variety. These algebraic results allow to parametrize the set of all robust probability distributions.

Abstract:
Conditional independence in a multivariate normal (or Gaussian) distribution is characterized by the vanishing of subdeterminants of the distribution's covariance matrix. Gaussian conditional independence models thus correspond to algebraic subsets of the cone of positive definite matrices. For statistical inference in such models it is important to know whether or not the model contains singularities. We study this issue in models involving up to four random variables. In particular, we give examples of conditional independence relations which, despite being probabilistically representable, yield models that non-trivially decompose into a finite union of several smooth submodels.

Abstract:
It is well-known that the notion of (strong) conditional independence (CI) is too restrictive to capture independencies that only hold in certain contexts. This kind of contextual independency, called context-strong independence (CSI), can be used to facilitate the acquisition, representation, and inference of probabilistic knowledge. In this paper, we suggest the use of contextual weak independence (CWI) in Bayesian networks. It should be emphasized that the notion of CWI is a more general form of contextual independence than CSI. Furthermore, if the contextual strong independence holds for all contexts, then the notion of CSI becomes strong CI. On the other hand, if the weak contextual independence holds for all contexts, then the notion of CWI becomes weak independence (WI) nwhich is a more general noncontextual independency than strong CI. More importantly, complete axiomatizations are studied for both the class of WI and the class of CI and WI together. Finally, the interesting property of WI being a necessary and sufficient condition for ensuring consistency in granular probabilistic networks is shown.

Abstract:
In broad applications, it is routinely of interest to assess whether there is evidence in the data to refute the assumption of conditional independence of $Y$ and $X$ conditionally on $Z$. Such tests are well developed in parametric models but are not straightforward in the nonparametric case. We propose a general Bayesian approach, which relies on an encompassing nonparametric Bayes model for the joint distribution of $Y$, $X$ and $Z$. The framework allows $Y$, $X$ and $Z$ to be random variables on arbitrary spaces, and can accommodate different dimensional vectors having a mixture of discrete and continuous measurement scales. Using conditional mutual information as a scalar summary of the strength of the conditional dependence relationship, we construct null and alternative hypotheses. We provide conditions under which the correct hypothesis will be consistently selected. Computational methods are developed, which can be incorporated within MCMC algorithms for the encompassing model. The methods are applied to variable selection and assessed through simulations and criminology applications.