Abstract:
The goal of this paper is to integrate the notions of stochastic conditional independence and variation conditional independence under a more general notion of extended conditional independence. We show that under appropriate assumptions the calculus that applies for the two cases separately (axioms of a separoid) still applies for the extended case. These results provide a rigorous basis for a wide range of statistical concepts, including ancillarity and sufficiency, and, in particular, the Decision Theoretic framework for statistical causality, which uses the language and calculus of conditional independence in order to express causal properties and make causal inferences.

Abstract:
Conditional independence testing is an important problem, especially in Bayesian network learning and causal discovery. Due to the curse of dimensionality, testing for conditional independence of continuous variables is particularly challenging. We propose a Kernel-based Conditional Independence test (KCI-test), by constructing an appropriate test statistic and deriving its asymptotic distribution under the null hypothesis of conditional independence. The proposed method is computationally efficient and easy to implement. Experimental results show that it outperforms other methods, especially when the conditioning set is large or the sample size is not very large, in which case other methods encounter difficulties.

Abstract:
This work investigates the intersection property of conditional independence. It states that for random variables $A,B,C$ and $X$ we have that $X$ independent of $A$ given $B,C$ and $X$ independent of $B$ given $A,C$ implies $X$ independent of $(A,B)$ given $C$. Under the assumption that the joint distribution has a continuous density, we provide necessary and sufficient conditions under which the intersection property holds. The result has direct applications to causal inference: it leads to strictly weaker conditions under which the graphical structure becomes identifiable from the joint distribution of an additive noise model.

Abstract:
Inferring the causal structure that links n observables is usually based upon detecting statistical dependences and choosing simple graphs that make the joint measure Markovian. Here we argue why causal inference is also possible when only single observations are present. We develop a theory how to generate causal graphs explaining similarities between single objects. To this end, we replace the notion of conditional stochastic independence in the causal Markov condition with the vanishing of conditional algorithmic mutual information and describe the corresponding causal inference rules. We explain why a consistent reformulation of causal inference in terms of algorithmic complexity implies a new inference principle that takes into account also the complexity of conditional probability densities, making it possible to select among Markov equivalent causal graphs. This insight provides a theoretical foundation of a heuristic principle proposed in earlier work. We also discuss how to replace Kolmogorov complexity with decidable complexity criteria. This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical independence with practical independence tests that are based on implicit or explicit assumptions on the underlying distribution.

Abstract:
It is well known that conditional independence can be used to factorize a joint probability into a multiplication of conditional probabilities. This paper proposes a constructive definition of inter-causal independence, which can be used to further factorize a conditional probability. An inference algorithm is developed, which makes use of both conditional independence and inter-causal independence to reduce inference complexity in Bayesian networks.

Abstract:
This paper explores the role of Directed Acyclic Graphs (DAGs) as a representation of conditional independence relationships. We show that DAGs offer polynomially sound and complete inference mechanisms for inferring conditional independence relationships from a given causal set of such relationships. As a consequence, d-separation, a graphical criterion for identifying independencies in a DAG, is shown to uncover more valid independencies then any other criterion. In addition, we employ the Armstrong property of conditional independence to show that the dependence relationships displayed by a DAG are inherently consistent, i.e. for every DAG D there exists some probability distribution P that embodies all the conditional independencies displayed in D and none other.

Abstract:
Heckerman (1993) defined causal independence in terms of a set of temporal conditional independence statements. These statements formalized certain types of causal interaction where (1) the effect is independent of the order that causes are introduced and (2) the impact of a single cause on the effect does not depend on what other causes have previously been applied. In this paper, we introduce an equivalent a temporal characterization of causal independence based on a functional representation of the relationship between causes and the effect. In this representation, the interaction between causes and effect can be written as a nested decomposition of functions. Causal independence can be exploited by representing this decomposition in the belief network, resulting in representations that are more efficient for inference than general causal models. We present empirical results showing the benefits of a causal-independence representation for belief-network inference.

Abstract:
Valuation networks have been proposed as graphical representations of valuation-based systems (VBSs). The VBS framework is able to capture many uncertainty calculi including probability theory, Dempster-Shafer's belief-function theory, Spohn's epistemic belief theory, and Zadeh's possibility theory. In this paper, we show how valuation networks encode conditional independence relations. For the probabilistic case, the class of probability models encoded by valuation networks includes undirected graph models, directed acyclic graph models, directed balloon graph models, and recursive causal graph models.

Abstract:
The graphoid axioms for conditional independence, originally described by Dawid [1979], are fundamental to probabilistic reasoning [Pearl, 19881. Such axioms provide a mechanism for manipulating conditional independence assertions without resorting to their numerical definition. This paper explores a representation for independence statements using multiple undirected graphs and some simple graphical transformations. The independence statements derivable in this system are equivalent to those obtainable by the graphoid axioms. Therefore, this is a purely graphical proof technique for conditional independence.

Abstract:
This paper introduces the notions of independence and conditional independence in valuation-based systems (VBS). VBS is an axiomatic framework capable of representing many different uncertainty calculi. We define independence and conditional independence in terms of factorization of the joint valuation. The definitions of independence and conditional independence in VBS generalize the corresponding definitions in probability theory. Our definitions apply not only to probability theory, but also to Dempster-Shafer's belief-function theory, Spohn's epistemic-belief theory, and Zadeh's possibility theory. In fact, they apply to any uncertainty calculi that fit in the framework of valuation-based systems.