Abstract:
By variational methods and some analysis techniques, the multiplicity of positive solutions is obtained for a class of weighted quasilinear elliptic equations with critical Hardy-Sobolev exponents and concave-convex nonlinearities.

Abstract:
Using variational methods, including the Ljusternik-Schnirelmann theory, we prove the existence of solutions for quasilinear elliptic systems with critical Sobolev exponents and Hardy terms.

Abstract:
研究了一类加权拟线性椭圆方程，利用Ekeland变分原理和强极大值原理，证明了该方程正解的存在性和多重性. We investigate a quasilinear elliptic equation with weighted Hardy-Sobolev exponents and, by means of Ekeland's variational principle and strong maximum principle, prove the existence and multiplicity of its positive solutions under different conditions

Abstract:
We study quasilinear elliptic equations of the form $\text{div} \mathbf{A}(x,u,\nabla u) = \text{div}\mathbf{F} $ in bounded domains in $\mathbb{R}^n$, $n\geq 1$. The vector field $\mathbf{A}$ is allowed to be discontinuous in $x$, Lipschitz continuous in $u$ and its growth in the gradient variable is like the $p$-Laplace operator with $1

p$, and we show that similar results also hold true in the setting of {\it Orlicz} spaces. Our regularity estimates extend results which are only known for the case $\mathbf{A}$ is independent of $u$ and they complement the well-known interior $C^{1,\alpha}$- estimates obtained by DiBenedetto \cite{D} and Tolksdorf \cite{T} for general quasilinear elliptic equations.

Abstract:
The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^{k, \infty}; k \in {\mathbb{N}}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner: On the recovery of functions from pointwise boundary values in a Hardy-sobolev class of the disk. J.Comput.Apll.Math 46(1993), 255-69 and by S. Chaabane and I. Feki: Logarithmic stability estimates in Hardy-Sobolev spaces $H^{k,\infty}$. C.R. Acad. Sci. Paris, Ser. I 347(2009), 1001-1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.

Abstract:
We prove a logarithmic estimate in the Hardy-Sobolev space $H^{k, 2}$, $k$ a positive integer, of the unit disk ${\mathbb D}$. This estimate extends those previously established by L. Baratchart and M. Zerner in $H^{1,2}$ and by S. Chaabane and I. Feki in $H^{k,\infty}$. We use it to derive logarithmic stability results for the inverse problem of identifying Robin's coefficients in corrosion detection by electrostatic boundary measurements and for a recovery interpolation scheme in the Hardy-Sobolev space $H^{k, 2}$ with interpolation points located on the boundary ${\mathbb T}$ of the unit disk.

Abstract:
Bounded smooth solutions of the Dirichlet and Neumann problems for a wide variety of quasilinear parabolic equations, including graphical anisotropic mean curvature flows, have gradient bounded in terms of oscillation and elapsed time.

Abstract:
Optimal estimates on the asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations \[-\Delta_{p}u-\frac{\mu}{|x|^{p}}|u|^{p-2}u=Q(x)|u|^{\frac{Np}{N-p}-2}u,\quad\,x\in \mathbb{R}^{N},\] where $1

Abstract:
We obtain Sobolev inequalities for the Schrodinger operator -\Delta-V, where V has critical behaviour V(x)=((N-2)/2)^2|x|^{-2} near the origin. We apply these inequalities to obtain pointwise estimates on the associated heat kernel, improving upon earlier results.

Abstract:
Motivated by the equation satisfied by the extremals of certain Hardy-Sobolev type inequalities, we show sharp $L^q$ regularity for finite energy solutions of p-laplace equations involving critical exponents and possible singularity on a sub-space of $\mathbb{R}^n$, which imply asymptotic behavior of the solutions at infinity. In addition, we find the best constant and extremals in the case of the considered $L^2$ Hardy-Sobolev inequality.