Abstract:
Given an arbitrary sheaf $\mathcal{E}$ of $\mathcal{A}$-modules (or $\mathcal{A}$-module in short) on a topological space $X$, we define \textit{annihilator sheaves} of sub-$\mathcal{A}$-modules of $\mathcal{E}$ in a way similar to the classical case, and obtain thereafter the analog of the \textit{main theorem}, regarding classical annihilators in module theory, see Curtis[\cite{curtis}, pp. 240-242]. The familiar classical properties, satisfied by annihilator sheaves, allow us to set clearly the \textit{sheaf-theoretic version} of \textit{symplectic reduction}, which is the main goal in this paper.

Abstract:
Sheaf theoretically based Abstract Differential Geometry incorporates and generalizes all the classical differential geometry. Here, we undertake to partially explore the implications of Abstract Differential Geometry to classical symplectic geometry. The full investigation will be presented elsewhere.

Abstract:
In this paper, as part of a project initiated by A. Mallios consisting of exploring new horizons for \textit{Abstract Differential Geometry} ($\grave{a}$ la Mallios), \cite{mallios1997, mallios, malliosvolume2, modern}, such as those related to the \textit{classical symplectic geometry}, we show that results pertaining to biorthogonality in pairings of vector spaces do hold for biorthogonality in pairings of $\mathcal A$-modules. However, for the \textit{dimension formula} the algebra sheaf $\mathcal A$ is assumed to be a PID. The dimension formula relates the rank of an $\mathcal A$-morphism and the dimension of the kernel (sheaf) of the same $\mathcal A$-morphism with the dimension of the source free $\mathcal A$-module of the $\mathcal A$-morphism concerned. Also, in order to obtain an analog of the Witt's hyperbolic decomposition theorem, $\mathcal A$ is assumed to be a PID while topological spaces on which $\mathcal A$-modules are defined are assumed \textit{connected}.

Abstract:
Let W be an arbitrary Coxeter group of simply-laced type (possibly infinite but of finite rank), u,v be any two elements in W, and i be a reduced word (of length m) for the pair (u,v) in the Coxeter group W\times W. We associate to i a subgroup Gamma_i in GL_m(Z) generated by symplectic transvections. We prove among other things that the subgroups corresponding to different reduced words for the same pair (u,v) are conjugate to each other inside GL_m(Z). We also generalize the enumeration result of the first three authors (see AG/9802093) by showing that, under certain assumptions on u and v, the number of Gamma_i(F_2)-orbits in F_2^m is equal to 3\times 2^s, where s is the number of simple reflections that appear in a reduced decomposition for u or v and F_2 is the two-element field.

Abstract:
Symmetric symplectic spaces of Ricci type are a class of symmetric symplectic spaces which can be entirely described by reduction of certain quadratic Hamiltonian systems in a symplectic vector space. We determine, in a large number of cases, if such a space admits a subgroup of its transvection group acting simply transitively. We observe that the simply transitive subgroups obtained are one dimensional extensions of the Heisenberg group.

Abstract:
It is proved that for any free $\mathcal{A}$-modules $\mathcal{F}$ and $\mathcal{E}$ of finite rank on some $\mathbb{C}$-algebraized space $(X, \mathcal{A})$ a \textit{degenerate} bilinear $\mathcal{A}$-morphism $\Phi: \mathcal{F}\times \mathcal{E}\longrightarrow \mathcal{A}$ induces a \textit{non-degenerate} bilinear $\mathcal{A}$-morphism $\bar{\Phi}: \mathcal{F}/\mathcal{E}^\perp\times \mathcal{E}/\mathcal{F}^\perp\longrightarrow \mathcal{A}$, where $\mathcal{E}^\perp$ and $\mathcal{F}^\perp$ are the \textit{orthogonal} sub-$\mathcal{A}$-modules associated with $\mathcal{E}$ and $\mathcal{F}$, respectively. This result generalizes the finite case of the classical result, which states that given two vector spaces $W$ and $V$, paired into a field $k$, the induced vector spaces $W/V^\perp$ and $V/W^\perp$ have the same dimension. Some related results are discussed as well.

Abstract:
In this paper, we investigate the notions of $\mathcal{U}_\mathcal{X}$-projective, $\mathcal{X}$-injective and $\mathcal{X}$-flat modules and give their characterizations, where $\mathcal{X}$ is the class of left $R$-modules. We prove the class of all $\mathcal{U}_\mathcal{X}$-projective modules is Kaplansky and show the existence of $\widetilde{\mathcal{U}_\mathcal{X}}$-covers and $\mathcal{U}_\mathcal{X}$-envelopes over a $\mathcal{U}_\mathcal{X}$-hereditary ring $R.$ Moreover, we prove that decomposition of a $\mathcal{U}_\mathcal{X}$-projective module into a projective and a coreduced $\mathcal{U}_\mathcal{X}$-projective module over a self $\mathcal{X}$-injective and $\mathcal{U}_\mathcal{X}$-hereditary ring. Finally, we prove that every module has an $\mathcal{X}$-injective cover over a Noetherian ring $R,$ where $\mathcal{X}$ is the class of all pure projective modules.

Abstract:
A Dwork family is a one-parameter monomial deformation of a Fermat hypersurface. In this paper we compute algebraically the invariant part of its Gauss-Manin cohomology under the action of certain subgroup of automorphisms. To achieve that goal we use the algebraic theory of $\mathcal{D}$-modules, especially one-dimensional hypergeometric ones.

Abstract:
We define and study category $\mathcal O$ for a symplectic resolution, generalizing the classical BGG category $\mathcal O$, which is associated with the Springer resolution. This includes the development of intrinsic properties parallelling the BGG case, such as a highest weight structure and analogues of twisting and shuffling functors, along with an extensive discussion of individual examples. We observe that category $\mathcal O$ is often Koszul, and its Koszul dual is often equivalent to category $\mathcal O$ for a different symplectic resolution. This leads us to define the notion of a symplectic duality between symplectic resolutions, which is a collection of isomorphisms between representation theoretic and geometric structures, including a Koszul duality between the two categories. This duality has various cohomological consequences, including (conjecturally) an identification of two geometric realizations, due to Nakajima and Ginzburg/Mirkovi\'c-Vilonen, of weight spaces of simple representations of simply-laced simple algebraic groups. An appendix by Ivan Losev establishes a key step in the proof that $\mathcal O$ is highest weight.

Abstract:
This paper is devoted to the comparison of the notions of regularity for algebraic connections and (holonomic) regularity for algebraic $\mathcal D$-modules.