oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Smooth rigidity of uniformly quasiconformal Anosov flows  [PDF]
Yong Fang
Mathematics , 2005,
Abstract: We classify quasiconformal Anosov flows whose strong stable and unstable distributions are at least two dimensional and the sum of these two distributions is smooth. We deduce from this classification result the complete classification of volume-preserving quasiconformal diffeomorphisms whose stable and unstable distributions are at least two dimensional. Our central idea is to take a good time change so that perodic orbits are equi-distributed with respect to a lebesgue measure.
Lebesgue Orbit Equivalence of Multidimensional Borel Flows  [PDF]
Konstantin Slutsky
Mathematics , 2015,
Abstract: The main result of the paper is classification of free multidimensional Borel flows up to Lebesgue Orbit Equivalence, by which we understand an orbit equivalence that preserves the Lebesgue measure on each orbit. Two non smooth Euclidean flows are shown to be Lebesgue Orbit Equivalence if and only if they admit the same number of invariant ergodic probability measures.
Counting periodic orbits of Anosov flows in free homotopy classes  [PDF]
Thomas Barthelmé,Sergio R. Fenley
Mathematics , 2015,
Abstract: The main result of this article is that if a $3$-manifold $M$ supports an Anosov flow, then the number of conjugacy classes in the fundamental group of $M$ grows exponentially fast with the length of the shortest orbit representative, hereby answering a question raised by Plante and Thurston in 1972. In fact we show that, when the flow is transitive, the exponential growth rate is exactly the topological entropy of the flow. We also show that taking only the shortest orbit representatives in each conjugacy classes still yields Bowen's version of the measure of maximal entropy. These results are achieved by obtaining counting results on the growth rate of the number of periodic orbits inside a free homotopy class. In the first part of the article, we also construct many examples of Anosov flows having some finite and some infinite free homotopy classes of periodic orbits, and we also give a characterization of algebraic Anosov flows as the only $\mathbb{R}$-covered Anosov flows up to orbit equivalence that do not admit at least one infinite free homotopy class of periodic orbits.
Pseudo-Anosov flows in toroidal manifolds  [PDF]
Thierry Barbot,Sergio Fenley
Mathematics , 2010, DOI: 10.2140/gt.2013.17.1877
Abstract: We first prove rigidity results for pseudo-Anosov flows in prototypes of toroidal 3-manifolds: we show that a pseudo-Anosov flow in a Seifert fibered manifold is up to finite covers topologically equivalent to a geodesic flow and we show that a pseudo-Anosov flow in a solv manifold is topologically equivalent to a suspension Anosov flow. Then we study the interaction of a general pseudo-Anosov flow with possible Seifert fibered pieces in the torus decomposition: if the fiber is associated with a periodic orbit of the flow, we show that there is a standard and very simple form for the flow in the piece using Birkhoff annuli. This form is strongly connected with the topology of the Seifert piece. We also construct a large new class of examples in many graph manifolds, which is extremely general and flexible. We construct other new classes of examples, some of which are generalized pseudo-Anosov flows which have one prong singularities and which show that the above results in Seifert fibered and solvable manifolds do not apply to one prong pseudo-Anosov flows. Finally we also analyse immersed and embedded incompressible tori in optimal position with respect to a pseudo-Anosov flow.
On Contact Anosov Flows  [PDF]
Liverani Carlangelo
Mathematics , 2003,
Abstract: Exponential decay of correlations for $\Co^{(4)}$ Contact Anosov flows is established. This implies, in particular, exponential decay of correlations for all smooth geodesic flows in strictly negative curvature.
Large deviation rule for Anosov flows  [PDF]
Guido Gentile
Physics , 1996,
Abstract: The volume contraction in dissipative reversible transitive Anosov flows obeys a large deviation rule (fluctuation theorem).
Classification and rigidity of totally periodic pseudo-Anosov flows in graph manifolds  [PDF]
Thierry Barbot,Sergio R. Fenley
Mathematics , 2012, DOI: 10.1017/etds.2014.9
Abstract: In this article we analyze totally periodic pseudo-Anosov flows in graph three manifolds. This means that in each Seifert fibered piece of the torus decomposition, the free homotopy class of regular fibers has a finite power which is also a finite power of the free homotopy class of a closed orbit of the flow. We show that each such flow is topologically equivalent to one of the model pseudo-Anosov flows which we constructed in a previous article. A model pseudo-Anosov flow is obtained by glueing standard neighborhoods of Birkhoff annuli and perhaps doing Dehn surgery on certain orbits. We also show that two model flows on the same graph manifold are isotopically equivalent (ie. there is a isotopy of the manifold mapping the oriented orbits of the first flow to the oriented orbits of the second flow) if and only if they have the same topological and dynamical data in the collection of standard neighborhoods of the Birkhoff annuli.
Free Seifert pieces of pseudo-Anosov flows  [PDF]
Thierry Barbot,Sergio Fenley
Mathematics , 2015,
Abstract: We prove a structure theorem for pseudo-Anosov flows restricted to Seifert fibered pieces of three manifolds. The piece is called periodic if there is a Seifert fibration so that a regular fiber is freely homotopic, up to powers, to a closed orbit of the flow. A non periodic Seifert fibered piece is called free. In a previous paper [Ba-Fe1] we described the structure of a pseudo-Anosov flow restricted to a periodic piece up to isotopy along the flow. In the present paper we consider free Seifert pieces. We show that, in a carefully defined neighborhood of the free piece, the pseudo-Anosov flow is orbitally equivalent to a hyperbolic blow up of a geodesic flow piece. A geodesic flow piece is a finite cover of the geodesic flow on a compact hyperbolic surface, usually with boundary. In the proof we introduce almost k-convergence groups and prove a convergence theorem. We also introduce an alternative model for the geodesic flow of a hyperbolic surface that is suitable to prove these results, and we carefully define what is a hyperbolic blow up.
Regular decay of ball diameters and spectra of Ruelle operators for contact Anosov flows  [PDF]
Luchezar Stoyanov
Mathematics , 2011,
Abstract: For Anosov flows on compact Riemann manifolds we study the rate of decay along the flow of diameters of balls $B^s(x,\ep)$ on local stable manifolds at Lyapunov regular points $x$. We prove that this decay rate is similar for all sufficiently small values of $\epsilon > 0$. From this and the main result in \cite{kn:St1}, we derive strong spectral estimates for Ruelle transfer operators for contact Anosov flows with Lipschitz local stable holonomy maps. These apply in particular to geodesic flows on compact locally symmetric manifolds of strictly negative curvature. As is now well known, such spectral estimates have deep implications in some related areas, e.g. in studying analytic properties of Ruelle zeta functions and partial differential operators, asymptotics of closed orbit counting functions, etc.
Ruelle transfer operators for contact Anosov flows and decay of correlations  [PDF]
Luchezar Stoyanov
Mathematics , 2013,
Abstract: We prove strong spectral estimates for Ruelle transfer operators for arbitrary $C^2$ contact Anosov flows in any dimension. For such flows some of the consequences of the main result are: (a) exponential decay of correlations for H\"older continuous observables with respect to any Gibbs measure; (b) existence of a non-zero analytic continuation of the Ruelle zeta function with a pole at the entropy in a vertical strip containing the entropy in its interior; (c) a Prime Orbit Theorem with an exponentially small error. All these results apply for example to geodesic flows on arbitrary compact Riemann manifolds of negative curvature.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.