oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Tracy-Widom at high temperature  [PDF]
Romain Allez,Laure Dumaz
Statistics , 2013, DOI: 10.1007/s10955-014-1058-z
Abstract: We investigate the marginal distribution of the bottom eigenvalues of the stochastic Airy operator when the inverse temperature $\beta$ tends to $0$. We prove that the minimal eigenvalue, whose fluctuations are governed by the Tracy-Widom $\beta$ law, converges weakly, when properly centered and scaled, to the Gumbel distribution. More generally we obtain the convergence in law of the marginal distribution of any eigenvalue with given index $k$. Those convergences are obtained after a careful analysis of the explosion times process of the Riccati diffusion associated to the stochastic Airy operator. We show that the empirical measure of the explosion times converges weakly to a Poisson point process using estimates proved in [L. Dumaz and B. Vir\'ag. Ann. Inst. H. Poincar\'e Probab. Statist. 49, 4, 915-933, (2013)]. We further compute the empirical eigenvalue density of the stochastic Airy ensemble on the macroscopic scale when $\beta\to 0$. As an application, we investigate the maximal eigenvalues statistics of $\beta_N$-ensembles when the repulsion parameter $\beta_N\to 0$ when $N\to +\infty$. We study the double scaling limit $N\to +\infty, \beta_N \to 0$ and argue with heuristic and numerical arguments that the statistics of the marginal distributions can be deduced following the ideas of [A. Edelman and B. D. Sutton. J. Stat. Phys. 127, 6, 1121-1165 (2007)] and [J. A. Ram\'irez, B. Rider and B. Vir\'ag. J. Amer. Math. Soc. 24, 919-944 (2011)] from our later study of the stochastic Airy operator.
Discrete Tracy-Widom Operators  [PDF]
G. Blower,A. J. McCafferty
Mathematics , 2008,
Abstract: Integrable operators arise in random matrix theory, where they describe the asymptotic eigenvalue distribution of large self-adjoint random matrices from the generalized unitary ensembles. This paper considers discrete Tracy-Widom operators, and gives sufficient conditions for a discrete integrable operator to be the square of a Hankel matrix. Examples include the discrete Bessel kernel and kernels arising from the almost Mathieu equation and the Fourier transform of Mathieu's equation.
Deformations of the Tracy-Widom distribution  [PDF]
O. Bohigas,J. X. de Carvalho,M. P. Pato
Physics , 2008, DOI: 10.1103/PhysRevE.79.031117
Abstract: In random matrix theory (RMT), the Tracy-Widom (TW) distribution describes the behavior of the largest eigenvalue. We consider here two models in which TW undergoes transformations. In the first one disorder is introduced in the Gaussian ensembles by superimposing an external source of randomness. A competition between TW and a normal (Gaussian) distribution results, depending on the spreading of the disorder. The second model consists in removing at random a fraction of (correlated) eigenvalues of a random matrix. The usual formalism of Fredholm determinants extends naturally. A continuous transition from TW to the Weilbull distribution, characteristc of extreme values of an uncorrelated sequence, is obtained.
Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function  [PDF]
Jinho Baik,Robert Buckingham,Jeffery DiFranco
Mathematics , 2007, DOI: 10.1007/s00220-008-0433-5
Abstract: The Tracy-Widom distribution functions involve integrals of a Painlev\'e II function starting from positive infinity. In this paper, we express the Tracy-Widom distribution functions in terms of integrals starting from minus infinity. There are two consequences of these new representations. The first is the evaluation of the total integral of the Hastings-McLeod solution of the Painlev\'e II equation. The second is the evaluation of the constant term of the asymptotic expansions of the Tracy-Widom distribution functions as the distribution parameter approaches minus infinity. For the GUE Tracy-Widom distribution function, this gives an alternative proof of the recent work of Deift, Its, and Krasovsky. The constant terms for the GOE and GSE Tracy-Widom distribution functions are new.
The Tracy--Widom law for some sparse random matrices  [PDF]
Sasha Sodin
Mathematics , 2009, DOI: 10.1007/s10955-009-9813-2
Abstract: Consider the random matrix obtained from the adjacency matrix of a random d-regular graph by multiplying every entry by a random sign. The largest eigenvalue converges, after proper scaling, to the Tracy--Widom distribution.
Accuracy of the Tracy-Widom limit for the largest eigenvalue in white Wishart matrices  [PDF]
Zongming Ma
Mathematics , 2008,
Abstract: Let A be a p-variate real Wishart matrix on n degrees of freedom with identity covariance. The distribution of the largest eigenvalue in A has important applications in multivariate statistics. Consider the asymptotics when p grows in proportion to n, it is known from Johnstone (2001) that after centering and scaling, these distributions approach the orthogonal Tracy-Widom law for real-valued data, which can be numerically evaluated and tabulated in software. Under the same assumption, we show that more carefully chosen centering and scaling constants improve the accuracy of the distributional approximation by the Tracy-Widom limit to second order: O(min(n,p)^{-2/3}). Together with the numerical simulation, it implies that the Tracy-Widom law is an attractive approximation to the distributions of these largest eigenvalues, which is important for using the asymptotic result in practice. We also provide a parallel accuracy result for the smallest eigenvalue of A when n > p.
Searching for the Tracy-Widom distribution in nonequilibrium processes  [PDF]
Christian B. Mendl,Herbert Spohn
Physics , 2015,
Abstract: While originally discovered in the context of the Gaussian Unitary Ensemble, the Tracy-Widom distribution also rules the height fluctuations of growth processes. This suggests that there might be other nonequilibrium processes in which the Tracy-Widom distribution plays an important role. In our contribution we study one-dimensional systems with domain wall initial conditions. For an appropriate choice of parameters the profile develops a rarefaction wave, while maintaining the initial equilibrium states far to the left and right, which thus serve as infinitely extended thermal reservoirs. For two distinct model systems we will demonstrate that the properly projected time-integrated current has a deterministic contribution, linear in time $t$, and fluctuations of size $t^{1/3}$ with a Tracy-Widom distributed random amplitude.
Tracy-Widom asymptotics for q-TASEP  [PDF]
Patrik L. Ferrari,Balint Veto
Mathematics , 2013,
Abstract: We consider the q-TASEP that is a q-deformation of the totally asymmetric simple exclusion process (TASEP) on Z for q in [0,1) where the jump rates depend on the gap to the next particle. For step initial condition, we prove that the current fluctuation of q-TASEP at time t are of order t^{1/3} and asymptotically distributed as the GUE Tracy-Widom distribution, which confirms the KPZ scaling theory conjecture.
On an identity due to ((Bump and Diaconis) and (Tracy and Widom))  [PDF]
Paul-Olivier Dehaye
Mathematics , 2006,
Abstract: A classical question for a Toeplitz matrix with given symbol is to compute asymptotics for the determinants of its reductions to finite rank. One can also consider how those asymptotics are affected when shifting an initial set of rows and columns (or, equivalently, asymptotics of their minors). Bump and Diaconis (Toeplitz minors, J. Combin. Theory Ser. A, 97 (2002), pp. 252--271) obtained a formula for such shifts involving Laguerre polynomials and sums over symmetric groups. They also showed how the Heine identity extends for such minors, which makes this question relevant to Random Matrix Theory. Independently, Tracy and Widom (On the limit of some Toeplitz-like determinants, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 1194--1196) used the Wiener-Hopf factorization to express those shifts in terms of products of infinite matrices. We show directly why those two expressions are equal and uncover some structure in both formulas that was unknown to their authors. We introduce a mysterious differential operator on symmetric functions that is very similar to vertex operators. We show that the Bump-Diaconis-Tracy- Widom identity is a differentiated version of the classical Jacobi-Trudi identity.
Higher Order Analogues of Tracy-Widom Distributions via the Lax Method  [PDF]
Gernot Akemann,Max R. Atkin
Mathematics , 2012, DOI: 10.1088/1751-8113/46/1/015202
Abstract: We study the distribution of the largest eigenvalue in formal Hermitian one-matrix models at multicriticality, where the spectral density acquires an extra number of k-1 zeros at the edge. The distributions are directly expressed through the norms of orthogonal polynomials on a semi-infinite interval, as an alternative to using Fredholm determinants. They satisfy non-linear recurrence relations which we show form a Lax pair, making contact to the string literature in the early 1990's. The technique of pseudo-differential operators allows us to give compact expressions for the logarithm of the gap probability in terms of the Painleve XXXIV hierarchy. These are the higher order analogues of the Tracy-Widom distribution which has k=1. Using known Backlund transformations we show how to simplify earlier equivalent results that are derived from Fredholm determinant theory, valid for even k in terms of the Painleve II hierarchy.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.