Abstract:
In this work we present measurements of the electrical conductivity and of the magnetization of La and of La-Pr and La-Lu dilute (up to 2 atomic percent) alloys, from which we determine, very in particular, the influence of dilute magnetic impurities on the upper critical magnetic field amplitude [and then on the superconducting coherence length amplitude and on the Ginzburg-Landau parameter].

Abstract:
We studied effect of non-magnetic and magnetic impurities on superconductivity in Lu$_2$Fe$_3$Si$_5$ by small amount substitution of the Lu site, which investigated structural, magnetic, and electrical properties of non-magnetic (Lu$_{1-x}$Sc$_x$)$_2$Fe$_3$Si$_5$, (Lu$_{1-x}$Y$_x$)$_2$Fe$_3$Si$_5$, and magnetic (Lu$_{1-x}$Dy$_x$)$_2$Fe$_3$Si$_5$. The rapid depression of $T_c$ by non-magnetic impurities in accordance with the increase of residual resistivity reveals the strong pair breaking dominated by disorder. We provide compelling evidence for the sign reversal of the superconducting order parameter in Lu$_2$Fe$_3$Si$_5$.

Abstract:
To explore the origin of the observed giant magnetic moments ($\sim 7 \mu_B$) of Fe impurities on the surface and in the bulk of Cs films, we have performed the relativistic LSDA + U calculations using the linearized muffin-tin orbital (LMTO) band method. We have found that Fe impurities in Cs behave differently from those in noble metals or in Pd. Whereas the induced spin polarization of Cs atoms is negligible, the Fe ion itself is found to be the source of the giant magnetic moment. The 3d electrons of Fe in Cs are localized as the 4f electrons in rare-earth ions so that the orbital magnetic moment becomes as large as the spin magnetic moment. The calculated total magnetic moment of $M = 6.43 \mu_B$, which comes mainly from Fe ion, is close to the experimentally observed value.

Abstract:
Assisted hopping effects in magnetic impurities and quantum dots are analyzed. The magnitude of the assisted hopping term in a quantum dot in the limit of large level spacing is comparable to other corrections induced by the electron-electron interactions. Assisted hopping leads to differences between conductance peaks associated to the same level, and, when the effect is sufficiently strong, to local pairing correlations.

Abstract:
The electronic structures of four Laves phase iron compounds (e.g. YFe$_2$, ZrFe$_2$, LuFe$_2$ and HfFe$_2$) have been calculated by the state-of-the-art full potential electronic structure code. The magnetic moments collapse under hydrostatic pressure. This feature is found to be universal in these materials. Its electronic origin is provided by the sharp peaks in the density of states near the Fermi level. It is shown that a first order quantum phase transition can be expected under pressure in Y(Zr, or Lu)Fe$_2$, while a second order one in HfFe$_2$. The bonding characteristics are discussed to elucidate the equilibrium lattice constant variation. The large spontaneous volume magnetostriction gives one of the most important character of these compounds. Invar anomalies in these compounds can be partly explained by the current work when the fast continuous magnetic moment decrease at the decrease of the lattice constant was properly considered. This work may remind the experimentalists of these "old" compounds and exploration of the quantum properties under high pressures are greatly encouraged.

Abstract:
The effect of electronic interactions in graphene with vacancies or resonant scatterers is investigated. We apply dynamical mean-field theory in combination with quantum Monte Carlo simulations, which allow us to treat non-perturbatively quantum fluctuations beyond Hartree-Fock approximations. The interactions narrow the width of the resonance and induce a Curie magnetic susceptibility, signaling the formation of local moments. The absence of saturation of the susceptibility at low temperatures suggests that the coupling between the local moment and the conduction electrons is ferromagnetic.

Abstract:
The magnetism of quench-condensed Ru and Rh impurities and metal films on Ag(100) and Pt(997) has been studied using x-ray magnetic circular dichroism. In the coverage range between 0.22 ML and 2.0 ML no dichroic signal was detected at the M3,2 absorption edges of Ru on Ag(100) at a temperature of 5 K in the presence of an applied magnetic field. The same was found for coverages between 0.12 ML and 0.5 ML of Rh on Ag(100) and Pt(997). It is concluded that the magnetic moments of single impurities, small clusters of various shape and monolayers of the 4d metals are below the detection limit of 0.04 muB per atom. These results provide an unambiguous determination of the local magnetic moment of Ru and Rh deposited on nonmagnetic transition-metal surfaces, which are in contrast with theoretical predictions.

Abstract:
Resistivity r(T), Hall coefficient RH(T), superconducting temperature Tc, and the slope of the upper critical field -dHc2/dT were studied in poly- and single-crystalline samples of the Fe-based superconductor Lu2Fe3Si5 irradiated by fast neutrons. Atomic disordering induced by the neutron irradiation leads to a fast suppression of Tc similarly to the case of doping of Lu2Fe3Si5 with magnetic (Dy) and non-magnetic (Sc, Y) impurities. The same effect was observed in a novel FeAs-based superconductor La(O-F)FeAs after irradiation. Such behavior is accounted for by strong pair breaking that is traceable to scattering at non-magnetic impurities or radiation defects in unconventional superconductors. In such superconductors the sign of the order parameter changes between the different Fermi sheets (s+- model). Some relations that are specified for the properties of the normal and superconducting states in high-temperature superconductors are also observed in Lu2Fe3Si5. The first is the relationship -dHc2/dT ~ Tc, instead of the one expected for dirty superconductors -dHc2/dT ~ r0. The second is a correlation between the low-temperature linear coefficient a in the resistivity r = r0 + a1T, which appears presumably due to the scattering at magnetic fluctuations, and Tc; this correlation being an evidence of a tight relation between the superconductivity and magnetism. The data point to an unconventional (non-fononic) mechanism of superconductivity in Lu2Fe3Si5, and, probably, in some other Fe-based compounds, which can be fruitfully studied via the radiation-induced disordering.

Abstract:
Magnetic fields and magnetic impurities are each known to suppress superconductivity. However, as the field quenches (i.e. polarizes) the impurities, rich consequences, including field-enhanced superconductivity, can emerge when both effects are present. For the case of superconducting wires and thin films, this field-spin interplay is investigated via the Eilenberger-Usadel scheme. Non-monotonic dependence of the critical current on the field (and therefore field-enhanced superconductivity) is found to be possible, even in parameter regimes in which the critical temperature decreases monotonically with increasing field. The present work complements that of Kharitonov and Feigel'man, which predicts non-monotonic behavior of the critical temperature.

Abstract:
We report effects of local magnetic moment, Gd3+, doping (x =< 0.3) on superconducting and magnetic properties of the closely related Lu(1-x)GdxNi2B2C and Y(1-x)GdxNi2B2C series. The superconducting transition temperature decreases and the heat capacity jump associated with it drops rapidly with Gd-doping; qualitative changes with doping are also observed in the temperature-dependent upper critical field behavior, and a region of coexistence of superconductivity and spin-glass state is delineated on the x - T phase diagram. The evolution of superconducting properties can be understood within Abrikosov-Gor'kov theory of magnetic impurities in superconductors taking into account the paramagnetic effect on upper critical field with additional contributions particular for the family under study.