oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Results from the Borexino Experiment  [PDF]
Timo Lewke
Physics , 2009,
Abstract: Borexino is a low threshold liquid-scintillator detector for solar neutrinos located in the LNGS underground laboratory, Italy. Because of the ultra-high radio purity it is the first experiment able to do a real time analysis of the low energetic solar neutrinos. A detection of the solar 7Be neutrinos with a rate of 47+-7 counts/day/100tons can be reported (192 days of live time measurement). 8B neutrinos are observed with a rate of 0.26+-0.06 counts/day/100tons after 246 live days. All detected neutrino fluxes agree with the SSM predictions in case of the MSW-LMA oscillation solution. Borexino is the first experiment with the ablility to simultaneously measure solar neutrino oscillation in the vacuum-dominated and the matter-enhanced energy regions.
Solar neutrino with Borexino: results and perspectives  [PDF]
O. Smirnov,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chavarria,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,A. Empl,A. Etenko,K. Fomenko,D. Franco,G. Fiorentini,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,T. Lewke,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,F. Mantovani,S. Marcocci,Q. Meindl,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,B. Ricci,A. Romani,N. Rossi,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,F. von Feilitzsch,H. Wang,J. Winter,M. Wojcik,A. Wright,M. Wurm,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2014, DOI: 10.1134/S1063779615020185
Abstract: Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.
Fuzzy Interpolation and Other Interpolation Methods Used in Robot Calibrations
Ying Bai,Nailong Guo,Gerald Agbegha
Journal of Robotics , 2012, DOI: 10.1155/2012/376293
Abstract: A novel interpolation algorithm, fuzzy interpolation, is presented and compared with other popular interpolation methods widely implemented in industrial robots calibrations and manufacturing applications. Different interpolation algorithms have been developed, reported, and implemented in many industrial robot calibrations and manufacturing processes in recent years. Most of them are based on looking for the optimal interpolation trajectories based on some known values on given points around a workspace. However, it is rare to build an optimal interpolation results based on some random noises, and this is one of the most popular topics in industrial testing and measurement applications. The fuzzy interpolation algorithm (FIA) reported in this paper provides a convenient and simple way to solve this problem and offers more accurate interpolation results based on given position or orientation errors that are randomly distributed in real time. This method can be implemented in many industrial applications, such as manipulators measurements and calibrations, industrial automations, and semiconductor manufacturing processes.
The Recent Results of the Solar Neutrino Measurement in Borexino  [PDF]
Yusuke Koshio,for the Borexino collaboration
Physics , 2011,
Abstract: The recent released results of 153.62 ton year exposure of solar neutrino data in Borexino are here discussed. Borexino is a multi-purpose detector with large volume liquid scintillator, located in the underground halls of the Laboratori Nazionali del Gran Sasso in Italy. The experiment is running since 2007. The first realtime 7Be solar neutrino measurement has been released in 2008. Thanks to the precise detector calibration in 2009, the 7Be flux measurement has been reached with an accuracy better than 5%. The result related to the day/night effect in the $^7$Be energy region is also discussed. These results validate the MSW-LMA model for solar neutrino oscillation.
Recent Borexino results and prospects for the near future  [PDF]
D. D'Angelo,G. Bellini,J. Benziger,D. Bick,G. Bonfini,M. Buizza Avanzini,B. Caccianiga,L. Cadonati,F. Calaprice,P. Cavalcante,A. Chavarria,A. Chepurnov,S. Davini,A. Derbin,A. Empl,A. Etenko,F. von Feilitzsch,K. Fomenko,D. Franco,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,L. Grandi,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,T. Lewke,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,G. Manuzio,Q. Meindl,E. Meroni,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,N. Rossi,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,J. Winter,M. Wojcik,A. Wright,M. Wurm,J. Xu,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2014,
Abstract: The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.
Borexino  [PDF]
Lino Miramonti
Physics , 2006,
Abstract: Borexino is a massive calorimetric liquid scintillation detector whose installation has been completed in the underground Gran Sasso Laboratory. The focus of the experiment is on the direct and real time measurement of the flux of neutrinos produced in the $^{7}Be$ electron capture reaction in the Sun. Furthermore, recent studies about the reduction of the $^{11}C$ background through suitable rejection techniques demonstrated the possibility to open an interesting additional observation window in the energy region of the pep and CNO solar neutrinos. Beyond the solar neutrino program, the detector will be also a powerful observatory for antineutrinos from Supernovae, as well as for geoneutrinos, profiting from a very low background from nuclear reactors.
Implications of the SNO and the Homestake Results for the BOREXINO Experiment  [PDF]
S. M. Bilenky,T. Lachenmaier,W. Potzel,F. von Feilitzsch
Physics , 2001,
Abstract: Using the recent result of the SNO solar neutrino experiment, we have demonstrated in a model independent way that the contribution of Be-7 and other medium energy neutrinos to the event rate of the Homestake experiment is 4 sigma smaller than the BP2000 SSM prediction. We have considered the implications of this result for the future BOREXINO experiment.
Results and perspectives of the solar neutrino experiment Borexino  [PDF]
G. Ranucci,Borexino Collaboration
Physics , 2008,
Abstract: Borexino is a massive, calorimetric, liquid scintillator detector aimed at the detection of low energy sub-MeV solar neutrinos, installed at the Gran Sasso Laboratory. After several years of construction, data taking started in May 2007, providing immediately incontrovertible evidence of the unprecedented radiopurity of the target mass, at the level required to ensure the successful detection of 7Be solar neutrinos, which was then announced in the 2007 summer. In this talk first the main technical characteristics of the detector will be highlighted, with special emphasis on the exceptional purity challenges successfully faced by the Collaboration, and afterwards the physics outputs reached so far will be carefully reported and illustrated, together with the perspectives for the future measurements that will complete the broad program of the experiment.
Solar neutrino results from Borexino and main future perspectives  [PDF]
M. Pallavicini,for the Borexino Collaboration
Physics , 2009, DOI: 10.1016/j.nima.2010.06.067
Abstract: Borexino is a solar neutrino experiment running at the Laboratori Nazionali del Gran Sasso, Italy. The radioactive background levels in the liquid scintillator target meet or even exceed design goals, opening unanticipated opportunities. The main results, so far, are the measurement of the $^7$Be solar neutrino flux (the first ever done) and the measurement of the $^8$B neutrino flux performed with electron energy threshold of 2.8 MeV. The short and medium term perspectives are summarized in the conclusions.
Final results of Borexino Phase-I on low energy solar neutrino spectroscopy  [PDF]
Borexino Collaboration,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,M. B. Avanzini,B. Caccianiga,L. Cadonati,F. Calaprice,P. Cavalcante,A. Chavarria,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,A. Empl,A. Etenko,K. Fomenko,D. Franco,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,L. Grandi,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,T. Lewke,E. Litvinovich,B. Loer,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,G. Manuzio,Q. Meindl,E. Meroni,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,C. Pena-Garay,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,N. Rossi,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,F. von Feilitzsch,J. Winter,M. Wojcik,A. Wright,M. Wurm,J. Xu,O. Zaimidoroga,S. Zavatarelli,G. Zuzel
Physics , 2013, DOI: 10.1103/PhysRevD.89.112007
Abstract: Borexino has been running since May 2007 at the LNGS with the primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity, is optimized for the study of the lower energy part of the spectrum. During the Phase-I (2007-2010) Borexino first detected and then precisely measured the flux of the 7Be solar neutrinos, ruled out any significant day-night asymmetry of their interaction rate, made the first direct observation of the pep neutrinos, and set the tightest upper limit on the flux of CNO neutrinos. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds, quantify their event rates, describe the methods for their identification, selection or subtraction, and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources, the detailed modeling of the detector response, the ability to define an innermost fiducial volume with extremely low background via software cuts, and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the 7 Be neutrino interaction rate. The period, the amplitude, and the phase of the observed modulation are consistent with the solar origin of these events, and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of phase-I results in the context of the neutrino oscillation physics and solar models are presented.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.