oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars  [PDF]
T. T. Hansen,J. Andersen,B. Nordstr?m,T. C. Beers,V. M. Placco,J. Yoon,L. A. Buchhave
Physics , 2015,
Abstract: The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2,000 days and normal eccentricity; the binary frequency for the sample is 17+-9%. The single stars mostly belong to the recently-identified ``low-C band'', while the binaries have higher absolute carbon abundances. We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic ISM by an even earlier, external source, strongly indicating that the CEMP-no stars are likely bona fide second-generation stars. We discuss potential production sites for carbon and its transfer across interstellar distances in the early ISM, and implications for the composition of high-redshift DLA systems. Abridged.
Metal Enrichment in the Early Galactic Halo  [PDF]
C. Ikuta,N. Arimoto
Physics , 1999, DOI: 10.1093/pasj/51.4.459
Abstract: An early history of metal enrichment in the Galactic halo is studied. We investigate chemical inhomogeneity by using a stochastic chemical evolution model. The model confronts with metallicity distribution function of long-lived halo stars which is found to be a clue to obtain the best model prescriptions. We find that the star formation in the halo virtually terminated by around 1 Gyr and that the halo has never been chemically homogeneous in its star formation history. This conclusion does not depend whether mass loss from the halo is taken into account or not. Observed ratios of alpha-elements with respect to iron do not show scatters on a [alpha/Fe]-[Fe/H] plane, but this does not imply that interstellar matter in the halo was homogeneous because a chemical evolution path on this diagram is degenerate in the star formation rate. On the other hand, apparent spread of [Sr/Fe] ratio among metal-poor halo stars does not reflect an inhomogeneous metal enrichment, instead it is due to a sharp increase in a production rate of strontium that is probably synthesised in slightly less massive stars than progenitor of iron-producing SNII.
Enrichment of the r-process Element Europium in the Galactic Halo  [PDF]
Yuhri Ishimaru,Shinya Wanajo
Physics , 1998, DOI: 10.1086/311829
Abstract: We investigate the enrichment of europium, as a representative of r-process elements, in the Galactic halo. In present chemical evolution models, stars are assumed to be formed through shock processes by supernovae (SNe). The enrichment of the interstellar medium is calculated by a one-zone approach. The observed large dispersions in [Eu/Fe] for halo stars, converging with increasing metallicity, can be explained with our models. In addition, the mass range of SNe for the {\it r}-process site is constrained to be either stars of $8-10 M_\odot$ or $\gtrsim 30 M_\odot$.
The self-enrichment of galactic halo globular clusters : a clue to their formation ?  [PDF]
G. Parmentier,E. Jehin,P. Magain,C. Neuforge,A. Noels,A. A. Thoul
Physics , 1999,
Abstract: We present a model of globular cluster self-enrichment. In the protogalaxy, cold and dense clouds embedded in the hot protogalactic medium are assumed to be the progenitors of galactic halo globular clusters. The massive stars of a first generation of metal-free stars, born in the central areas of the proto-globular cluster clouds, explode as Type II supernovae. The associated blast waves trigger the expansion of a supershell, sweeping all the material of the cloud, and the heavy elements released by these massive stars enrich the supershell. A second generation of stars is born in these compressed and enriched layers of gas. These stars can recollapse and form a globular cluster. This work aims at revising the most often encountered argument against self-enrichment, namely the presumed ability of a small number of supernovae to disrupt a proto-globular cluster cloud. We describe a model of the dynamics of the supershell and of its progressive chemical enrichment. We show that the minimal mass of the primordial cluster cloud required to avoid disruption by several tens of Type II supernovae is compatible with the masses usually assumed for proto-globular cluster clouds. Furthermore, the corresponding self-enrichment level is in agreement with halo globular cluster metallicities.
S-stars in the Galactic center and hypervelocity stars in the Galactic halo: two faces of the tidal breakup of stellar binaries by the central massive black hole?  [PDF]
Fupeng Zhang,Youjun Lu,Qingjuan Yu
Physics , 2012, DOI: 10.1088/0004-637X/768/2/153
Abstract: In this paper, we investigate the link between the hypervelocity stars (HVSs) discovered in the Galactic halo and the S-stars moving in the Galactic center (GC), under the hypothesis that they are both the products of the tidal breakup of the same population of stellar binaries by the central massive black hole (MBH). By adopting several hypothetical models for binaries to be injected into the vicinity of the MBH and doing numerical simulations, we realize the tidal breakup processes of the binaries and their follow-up evolution. We find that many statistical properties of the detected HVSs and S-stars can be reproduced under some binary injecting models, and their number ratio can be reproduced if the stellar initial mass function is top-heavy (e.g., with slope ~-1.6). The total number of the captured companions is ~50 that have masses in the range ~3-7Msun and semimajor axes <~4000 AU and survive to the present within their main-sequence lifetime. The innermost one is expected to have a semimajor axis ~300-1500 AU and a pericenter distance ~10-200 AU, with a significant probability of being closer to the MBH than S2. Future detection of such a closer star would offer an important test to general relativity. The majority of the surviving ejected companions of the S-stars are expected to be located at Galactocentric distances <~20 kpc, and have heliocentric radial velocities ~-500-1500 km/s and proper motions up to ~5-20 mas/yr. Future detection of these HVSs may provide evidence for the tidal-breakup formation mechanism of the S-stars.
The first galactic stars and chemical enrichment in the halo  [PDF]
Piercarlo Bonifacio
Physics , 2010, DOI: 10.1017/S1743921310000268
Abstract: The cosmic microwave background and the cosmic expansion can be interpreted as evidence that the Universe underwent an extremely hot and dense phase about 14 Gyr ago. The nucleosynthesis computations tell us that the Universe emerged from this state with a very simple chemical composition: H, 2H, 3He, 4He, and traces of 7Li. All other nuclei where synthesised at later times. Our stellar evolution models tell us that, if a low-mass star with this composition had been created (a "zero-metal" star) at that time, it would still be shining on the Main Sequence today. Over the last 40 years there have been many efforts to detect such primordial stars but none has so-far been found. The lowest metallicity stars known have a metal content, Z, which is of the order of 10e-4Z_Sun. These are also the lowest metallicity objects known in the Universe. This seems to support the theories of star formation which predict that only high mass stars could form with a primordial composition and require a minimum metallicity to allow the formation of low-mass stars. Yet, since absence of evidence is not evidence of absence, we cannot exclude the existence of such low-mass zero-metal stars, at present. If we have not found the first Galactic stars, as a by product of our searches we have found their direct descendants, stars of extremely low metallicity (Z<=10e-3Z_Sun). The chemical composition of such stars contains indirect information on the nature of the stars responsible for the nucleosynthesis of the metals. Such a fossil record allows us a glimpse of the Galaxy at a look-back time equivalent to redshift z=10, or larger. The last ten years have been full of exciting discoveries in this field, which I will try to review in this contribution.
Linking the Metallicity Distribution of Galactic Halo Stars to the Enrichment History of the Universe  [PDF]
Evan Scannapieco,Tom Broadhurst
Physics , 2000, DOI: 10.1086/319487
Abstract: We compare the metallicity distribution of Galactic Halo stars with 3D realizations of hierarchical galaxy formation. Outflows from dwarf galaxies enrich the intergalactic medium inhomogeneously, at a rate depending on the local galaxy density. Consequently, the first stars created in small early-forming galaxies are less metal-rich that the first stars formed in more massive galaxies which typically form later. As most halo stars are likely to originate in accreted dwarfs, while disk stars formed out of outflow-enriched gas, this scenario naturally generates a ``metallicity floor'' for old disk stars, which we find to be roughly coincident with the higher end of our predicted metallicity distribution of halo stars, in agreement with observations. The broad and centrally peaked distribution of halo star metallicities is well reproduced in our models, with a natural dispersion depending on the exact accretion history. Our modeling includes the important ``baryonic stripping'' effect of early outflows, which brush away the tenuously held gas in neighboring pre-virialized density perturbations. This stripping process does not significantly modify the predicted shape of the halo star metal distribution but inhibits star-formation and hence the number of accreted stars, helping to reproduce the observed total Galactic halo luminosity and also the lack of low-luminosity local dwarf galaxies relative to N-body predictions.
Mining the Galactic Halo for Very Metal-Poor Stars  [PDF]
S. Salvadori,A. Ferrara,R. Schneider,E. Scannapieco,D. Kawata
Physics , 2009, DOI: 10.1111/j.1745-3933.2009.00772.x
Abstract: We study the age and metallicity distribution function (MDF) of metal-poor stars in the Milky Way halo as a function of galactocentric radius by combining N-body simulations and semi-analytical methods. We find that the oldest stars populate the innermost region, while extremely metal-poor stars are more concentrated within r < 60 kpc. The MDF of [Fe/H] < -2 stars varies only very weakly within the central 50 kpc, while the relative contribution of [Fe/H] < -2 stars strongly increases with r, varying from 16% within 7 kpc < r < 20 kpc up to > 40% for r > 20 kpc. This is due to the faster descent of the spatial distribution (as seen from Earth) of the more enriched population. This implies that the outer halo < 40 kpc is the best region to search for very metal-poor stars. Beyond ~ 60 kpc the density of [Fe/H] < -2 stars is maximum within dwarf galaxies. All these features are imprinted by a combination of (i) the virialization epoch of the star-forming haloes, and (ii) the metal enrichment history of the Milky Way environment.
Inhomogeneous Chemical Evolution of the Galactic Halo  [PDF]
C. Travaglio,A. Burkert,D. Galli
Physics , 1999,
Abstract: We describe the basic features of a Monte Carlo model specifically designed to follow the inhomogenous chemical evolution of the Galactic halo, taking into account the effects of local enrichment and mixing of the halo gas, and with particular emphasis on elements like Eu produced by r-process nucleosynthesis. We compare our results with spectroscopic data for the chemical composition of metal-poor halo stars and globular clusters like M13, M5, M92, M4, and we infer some constraints on the star formation history of the halo and the rate and mass spectrum of supernovae during the first epoch of Galaxy evolution.
Wind Roche-lobe overflow: Application to carbon-enhanced metal-poor stars  [PDF]
C. Abate,O. R. Pols,R. G. Izzard,S. S. Mohamed,S. E. de Mink
Physics , 2013, DOI: 10.1051/0004-6361/201220007
Abstract: Carbon-enhanced metal-poor stars (CEMP) are observed as a substantial fraction of the very metal-poor stars in the Galactic halo. Most CEMP stars are also enriched in s-process elements and these are often found in binary systems. This suggests that the carbon enrichment is due to mass transfer in the past from an asymptotic giant branch (AGB) star on to a low-mass companion. Models of binary population synthesis are not able to reproduce the observed fraction of CEMP stars without invoking non-standard nucleosynthesis or a substantial change in the initial mass function. This is interpreted as evidence of missing physical ingredients in the models. Recent hydrodynamical simulations show that efficient wind mass transfer is possible in the case of the slow and dense winds typical of AGB stars through a mechanism called wind Roche-lobe overflow (WRLOF), which lies in between the canonical Bondi-Hoyle-Lyttleton (BHL) accretion and Roche-lobe overflow. WRLOF has an effect on the accretion efficiency of mass transfer and on the angular momentum lost by the binary system. The aim of this work is to understand the overall effect of WRLOF on the population of CEMP stars. To simulate populations of low-metallicity binaries we combined a synthetic nucleosynthesis model with a binary population synthesis code. In this code we implemented the WRLOF mechanism. We used the results of hydrodynamical simulations to model the effect of WRLOF on the accretion efficiency and we took the effect on the angular momentum loss into account by assuming a simple prescription. As a result the number of CEMP stars predicted by our model increases by a factor 1.2-1.8 compared to earlier results that consider the BHL prescription. Moreover, higher enrichments of carbon are produced and the final orbital period distribution is shifted towards shorter periods.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.