Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Fluorescence decay-time constants in organic liquid scintillators  [PDF]
T. Marrodan Undagoitia,F. von Feilitzsch,L. Oberauer,W. Potzel,A. Ulrich,J. Winter,M. Wurm
Physics , 2009, DOI: 10.1063/1.3112609
Abstract: The fluorescence decay-time constants have been measured for several scintillator mixtures based on phenyl-o-xylylethane (PXE) and linear alkylbenzene (LAB) solvents. The resulting values are of relevance for the physics performance of the proposed large-volume liquid scintillator detector LENA (Low Energy Neutrino Astronomy). In particular, the impact of the measured values to the search for proton decay via p -> K+ antineutrino is evaluated in this work.
Spectroscopy of electron-induced fluorescence in organic liquid scintillators  [PDF]
T. Marrodan Undagoitia,F. von Feilitzsch,L. Oberauer,W. Potzel,A. Ulrich,J. Winter,M. Wurm
Physics , 2010, DOI: 10.1140/epjd/e2010-00004-1
Abstract: Emission spectra of several organic liquid-scintillator mixtures which are relevant for the proposed LENA detector have been measured by exciting the medium with electrons of ~10keV. The results are compared with spectra resulting from ultraviolet light excitation. Good agreement between spectra measured by both methods has been found.
Optical Properties of Quantum-Dot-Doped Liquid Scintillators  [PDF]
C. Aberle,J. J. Li,S. Weiss,L. Winslow
Physics , 2013, DOI: 10.1088/1748-0221/8/10/P10015
Abstract: Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.
Measurement of ortho-Positronium Properties in Liquid Scintillators  [PDF]
S. Perasso,G. Consolati,D. Franco,S. Hans,C. Jollet,A. Meregaglia,A. Tonazzo,M. Yeh
Physics , 2013, DOI: 10.1088/1748-0221/9/03/C03028
Abstract: Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.
Positronium signature in organic liquid scintillators for neutrino experiments  [PDF]
D. Franco,G. Consolati,D. Trezzi
Physics , 2010, DOI: 10.1103/PhysRevC.83.015504
Abstract: Electron anti-neutrinos are commonly detected in liquid scintillator experiments via inverse beta decay, by looking at the coincidence between the reaction products, neutron and positron. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean life of a few ns. Even if the o-Ps decay is speeded up by spin flip or pick off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in anti-neutrino experiments. Reversing the problem, the o-Ps induced time distortion represents a new signature for tagging anti-neutrinos in liquid scintillator. In this paper, we report the results of measurements of the o-Ps formation probability and lifetime, for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength shifter. In the second part of the paper, we demonstrate that the o-Ps induced distortion of the scintillation photon emission time distributions represent an optimal signature for tagging positrons on an event by event basis, potentially enhancing the anti-neutrino detection.
Characterization of positronium properties in doped liquid scintillators  [PDF]
G. Consolati,D. Franco,S. Hans,C. Jollet,A. Meregaglia,S. Perasso,A. Tonazzo,M. Yeh
Physics , 2013, DOI: 10.1103/PhysRevC.88.065502
Abstract: Ortho-positronium (o-Ps) formation and decay can replace the annihilation process, when positron interacts in liquid scintillator media. The delay induced by the positronium decay represents either a potential signature for anti-neutrino detection, via inverse beta decay, or to identify and suppress positron background, as recently demonstrated by the Borexino experiment. The formation probability and decay time of o-Ps depend strongly on the surrounding material. In this paper, we characterize the o-Ps properties in liquid scintillators as function of concentrations of gadolinium, lithium, neodymium, and tellurium, dopers used by present and future neutrino experiments. In particular, gadolinium and lithium are high neutron cross section isotopes, widely used in reactor anti-neutrino experiments, while neodymium and tellurium are double beta decay emitters, employed to investigates the Majorana neutrino nature. Future neutrino experiments may profit from the performed measurements to tune the preparation of the scintillator in order to maximize the o-Ps signature, and therefore the discrimination power.
Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy  [PDF]
H. Wan Chan Tseung,J. Kaspar,N. Tolich
Physics , 2011, DOI: 10.1016/j.nima.2011.06.095
Abstract: An experimental test of the electron energy scale linearities of SNO+ and EJ-301 scintillators was carried out using a Compton spectrometer with electrons in the energy range 0.09-3 MeV. The linearity of the apparatus was explicitly demonstrated. It was found that the response of both types of scintillators with respect to electrons becomes non-linear below ~0.4 MeV. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillators.
Low-Afterglow, High-Refractive-Index Liquid Scintillators for Fast-Neutron Spectrometry and Imaging Applications  [PDF]
Ronald Lauck,Michal Brandis,Benjamin Bromberger,Volker Dangendorf,Mark B. Goldberg,Ilan Mor,Kai Tittelmeier,David Vartsky
Physics , 2009, DOI: 10.1109/TNS.2008.2009449
Abstract: For ion and neutron spectrometry and imaging applications at a high intensity pulsed laser facility, fast liquid scintillators with very low afterglow are required. Furthermore, neutron imaging with fiber (or liquid-core) capillary arrays calls for scintillation materials with high refractive index. To this end, we have examined various combinations of established mixtures of fluors and solvents, that were enriched alternatively with nitrogen or oxygen. Dissolved molecular oxygen is known to be a highly effective quenching agent, that efficiently suppresses the population of the triplet states in the fluor, which are primarily responsible for the afterglow. For measuring the glow curves of scintillators, we have employed the time-correlated single photon counting (TCSPC) technique, characterized by high dynamic range of several orders of magnitude in light intensity. In this paper we outline the application for the fast scintillators, briefly present the scintillation mechanism in liquids, describe our specific TCSPC method and discuss the results.
Temperature dependence of the light yield of the LAB-based and mesitylene-based liquid scintillators  [PDF]
Xia DongMei,Yu BoXiang,Li XiaoBo,Sun XiLei,Ding YaYun,Zhou Li,Cao Jun,Hu Wei,Ye XingCheng,Chen HaiTao,Ding XueFeng,Du Bing
Physics , 2014,
Abstract: We studied the temperature dependence of the light yield of the linear alkyl benzene (LAB)-based and mesitylene-based liquid scintillators. The light yield increases by 23% for both liquid scintillators when the temperature is lowered from $26\;^{\circ}$C to $-40\;^{\circ }$C, correcting for the temperature response of the photomultiplier tube. The measurements help to understand the energy response of the liquid scintillator detectors. Especially, the next generation reactor neutrino experiments for neutrino mass hierarchy, such as the Jiangmen Underground Neutrino Observatory (JUNO), require very high energy resolution. As no apparent degradation on the liquid scintillator transparency was observed, lowering the operation temperature of the detector to $\sim4\;^\circ$C will increase the photoelectron yield of the detector by 13%, combining the light yield increase of the liquid scintillator and the quantum efficiency increase of the photomultiplier tubes.
Characterization and performances of new indium loaded organic liquid scintillators, based on novel indium carboxilate compounds  [PDF]
I. Barabanov,L. Bezrukov,C. Cattadori,N. Danilov,A. Di Vacri,N. Ferrari,V. Kornoukhov,Y. S. Krylov,N. Nesterova,S. Nisi,E. Yanovich
Physics , 2007,
Abstract: A novel formulation to dope organic liquid scintillators (OLS) with indium at concentrations up to 10% is presented: it is based on specific indium carboxylate compounds adequately synthesized. The produced In-OLS has been characterized: it has light yield 8500 ph/MeV at indium concentration 5.5% and light attenuation length of 2,5 m at wavelength of 430 nm. The scintillator properties were stable during all time of investigation (~ 1 years). The produced In-OLS is compared to other In-OLS formulations and shows superior performances. The developed methodic to metal dope OLS can be easily extended to other metals as Gd, Nd, Cd.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.