Abstract:
The Tracy-Widom beta distribution is the large dimensional limit of the top eigenvalue of beta random matrix ensembles. We use the stochastic Airy operator representation to show that as a tends to infinity the tail of the Tracy Widom distribution satisfies P(TW_beta > a) = a^(-3/4 beta+o(1)) exp(-2/3 beta a^(3/2)).

Abstract:
In random matrix theory (RMT), the Tracy-Widom (TW) distribution describes the behavior of the largest eigenvalue. We consider here two models in which TW undergoes transformations. In the first one disorder is introduced in the Gaussian ensembles by superimposing an external source of randomness. A competition between TW and a normal (Gaussian) distribution results, depending on the spreading of the disorder. The second model consists in removing at random a fraction of (correlated) eigenvalues of a random matrix. The usual formalism of Fredholm determinants extends naturally. A continuous transition from TW to the Weilbull distribution, characteristc of extreme values of an uncorrelated sequence, is obtained.

Abstract:
While originally discovered in the context of the Gaussian Unitary Ensemble, the Tracy-Widom distribution also rules the height fluctuations of growth processes. This suggests that there might be other nonequilibrium processes in which the Tracy-Widom distribution plays an important role. In our contribution we study one-dimensional systems with domain wall initial conditions. For an appropriate choice of parameters the profile develops a rarefaction wave, while maintaining the initial equilibrium states far to the left and right, which thus serve as infinitely extended thermal reservoirs. For two distinct model systems we will demonstrate that the properly projected time-integrated current has a deterministic contribution, linear in time $t$, and fluctuations of size $t^{1/3}$ with a Tracy-Widom distributed random amplitude.

Abstract:
Investigating the long time asymptotics of the totally asymmetric simple exclusion process, Sasamoto obtains rather indirectly a formula for the GOE Tracy-Widom distribution. We establish that his novel formula indeed agrees with more standard expressions.

Abstract:
We study a family of distributions that arise in critical unitary random matrix ensembles. They are expressed as Fredholm determinants and describe the limiting distribution of the largest eigenvalue when the dimension of the random matrices tends to infinity. The family contains the Tracy-Widom distribution and higher order analogues of it. We compute the distributions numerically by solving a Riemann-Hilbert problem numerically, plot the distributions, and discuss several properties that they appear to exhibit.

Abstract:
We study Fredholm determinants related to a family of kernels which describe the edge eigenvalue behavior in unitary random matrix models with critical edge points. The kernels are natural higher order analogues of the Airy kernel and are built out of functions associated with the Painlev\'e I hierarchy. The Fredholm determinants related to those kernels are higher order generalizations of the Tracy-Widom distribution. We give an explicit expression for the determinants in terms of a distinguished smooth solution to the Painlev\'e II hierarchy. In addition we compute large gap asymptotics for the Fredholm determinants.

Abstract:
We compute exactly the asymptotic distribution of scaled height in a (1+1)--dimensional anisotropic ballistic deposition model by mapping it to the Ulam problem of finding the longest nondecreasing subsequence in a random sequence of integers. Using the known results for the Ulam problem, we show that the scaled height in our model has the Tracy-Widom distribution appearing in the theory of random matrices near the edges of the spectrum. Our result supports the hypothesis that various growth models in $(1+1)$ dimensions that belong to the Kardar-Parisi-Zhang universality class perhaps all share the same universal Tracy-Widom distribution for the suitably scaled height variables.

Abstract:
We derive efficient recursive formulas giving the exact distribution of the largest eigenvalue for finite dimensional real Wishart matrices and for the Gaussian Orthogonal Ensemble (GOE). In comparing the exact distribution with the limiting distribution of large random matrices, we also found that the Tracy-Widom law can be approximated by a properly scaled and shifted Gamma distribution, with great accuracy for the values of common interest in statistical applications.

Abstract:
The distribution function of the free energy fluctuations in one-dimensional directed polymers with $\delta$-correlated random potential is studied by mapping the replicated problem to a many body quantum boson system with attractive interactions. Performing the summation over the entire spectrum of excited states the problem is reduced to the Fredholm determinant with the Airy kernel which is known to yield the Tracy-Widom distribution

Abstract:
We investigate the finite-size fluctuations due to quenched disorder of the critical temperature of the Sherrington-Kirkpatrick spin glass. In order to accomplish this task, we perform a finite-size analysis of the spectrum of the susceptibility matrix obtained via the Plefka expansion. By exploiting results from random matrix theory, we obtain that the fluctuations of the critical temperature are described by the Tracy-Widom distribution with a non-trivial scaling exponent 2/3.