Abstract:
We show that new massless Dirac fermions are generated when a slowly varying periodic potential is applied to graphene. These quasiparticles, generated near the supercell Brillouin zone boundaries with anisotropic group velocity, are different from the original massless Dirac fermions. The quasiparticle wavevector (measured from the new Dirac point), the generalized pseudospin vector, and the group velocity are not collinear. We further show that with an appropriate periodic potential of triangular symmetry, there exists an energy window over which the only available states are these quasiparticles, thus, providing a good system to probe experimentally the new massless Dirac fermions. The required parameters of external potentials are within the realm of laboratory conditions.

Abstract:
Charge carriers of graphene show neutrino-like linear energy dispersions as well as chiral behavior near the Dirac point. Here we report highly unusual and unexpected behaviors of these carriers in applied external periodic potentials, i.e., in graphene superlattices. The group velocity renormalizes highly anisotropically even to a degree that it is not changed at all for states with wavevector in one direction but is reduced to zero in another, implying the possibility that one can make nanoscale electronic circuits out of graphene not by cutting it but by drawing on it in a non-destructive way. Also, the type of charge carrier species (e.g. electron, hole or open orbit) and their density of states vary drastically with the Fermi energy, enabling one to tune the Fermi surface-dominant properties significantly with gate voltage. These results address the fundamental question of how chiral massless Dirac fermions propagate in periodic potentials and point to a new possible path for nanoscale electronics.

Abstract:
In the variational framework, we study the electronic energy spectrum of massless Dirac fermions of graphene subjected to one-dimensional oscillating magnetic and electrostatic fields centered around a constant uniform static magnetic field. We analyze the influence of the lateral periodic modulations in one direction, created by these oscillating electric and magnetic fields, on Dirac like Landau levels depending on amplitudes and periods of the field modulations. We compare our theoretical results with those found within the framework of non-degenerate perturbation theory. We found that the technique presented here yields energies lower than that obtained by the perturbation calculation, and thus gives more stable solutions for the electronic spectrum of massless Dirac fermion subjected to a magnetic field perpendicular to graphene layer under the influence of additional periodic potentials.

Abstract:
Analysis of the electronic structure of an ordinary two-dimensional electron gas (2DEG) under an appropriate external periodic potential of hexagonal symmetry reveals that massless Dirac fermions are generated near the corners of the supercell Brillouin zone. The required potential parameters are found to be achievable under or close to laboratory conditions. Moreover, the group velocity is tunable by changing either the effective mass of the 2DEG or the lattice parameter of the external potential, and it is insensitive to the potential amplitude. The finding should provide a new class of systems other than graphene for investigating and exploiting massless Dirac fermions using 2DEGs in semiconductors.

Abstract:
Due to Klein tunneling, electrostatic potentials are unable to confine Dirac electrons. We show that it is possible to confine massless Dirac fermions in a monolayer graphene sheet by inhomogeneous magnetic fields. This allows one to design mesoscopic structures in graphene by magnetic barriers, e.g. quantum dots or quantum point contacts.

Abstract:
Graphene grown on Fe(110)by chemical vapor deposition using propylene is investigated by means of angle-resolved photoemission. The presence of massless Dirac fermions is clearly evidenced by the observation of a fully intact Dirac cone. Unlike Ni(111) and Co(0001), the Fe(110) imposes a strongly anisotropic quasi-one-dimensional structure on the graphene. Certain signatures of a superlattice effect appear in the dispersion of its \sigma-bands but the Dirac cone does not reveal any detectable superlattice or quantum-size effects although the graphene corrugation is twice as large as in the established two-dimensional graphene superlattice on Ir(111).

Abstract:
The Schr\"odinger equation dictates that the propagation of nearly free electrons through a weak periodic potential results in the opening of band gaps near points of the reciprocal lattice known as Brillouin zone boundaries. However, in the case of massless Dirac fermions, it has been predicted that the chirality of the charge carriers prevents the opening of a band gap and instead new Dirac points appear in the electronic structure of the material. Graphene on hexagonal boron nitride (hBN) exhibits a rotation dependent Moir\'e pattern. In this letter, we show experimentally and theoretically that this Moir\'e pattern acts as a weak periodic potential and thereby leads to the emergence of a new set of Dirac points at an energy determined by its wavelength. The new massless Dirac fermions generated at these superlattice Dirac points are characterized by a significantly reduced Fermi velocity. The local density of states near these Dirac cones exhibits hexagonal modulations indicating an anisotropic Fermi velocity.

Abstract:
We evaluate the dispersion relation for massless fermions, described by the Dirac equation, and for zero-spin bosons, described by the Klein-Gordon equation, moving in two dimensions and in the presence of a one-dimensional periodic potential. For massless fermions the dispersion relation shows a zero gap for carriers with zero momentum in the direction parallel to the barriers in agreement with the well-known "Klein paradox". Numerical results for the energy spectrum and the density of states are presented. Those for fermions are appropriate to graphene in which carriers behave relativistically with the "light speed" replaced by the Fermi velocity. In addition, we evaluate the transmission through a finite number of barriers for fermions and zero-spin bosons and relate it with that through a superlattice.

Abstract:
Motivated by recent graphene transport experiments, we have undertaken a numerical study of the conductivity of disordered two-dimensional massless Dirac fermions. Our results reveal distinct differences between the cases of short-range and Coulomb randomly distributed scatterers. We speculate that this behavior is related to the Boltzmann transport theory prediction of dirty-limit behavior for Coulomb scatterers.

Abstract:
There are two types of intrinsic surface states in solids. The first type is formed on the surface of topological insulators. Recently, transport of massless Dirac fermions in the band of "topological" states has been demonstrated. States of the second type were predicted by Tamm and Shockley long ago. They do not have a topological background and are therefore strongly dependent on the properties of the surface. We study the problem of the conductivity of Tamm-Shockley edge states through direct transport experiments. Aharonov-Bohm magneto-oscillations of resistance are found on graphene samples that contain a single nanohole. The effect is explained by the conductivity of the massless Dirac fermions in the edge states cycling around the nanohole. The results demonstrate the deep connection between topological and non-topological edge states in 2D systems of massless Dirac fermions.