Abstract:
Lattice QCD calculations with different staggered valence and sea quarks can be used to improve determinations of quark masses, Gasser-Leutwyler couplings, and other parameters relevant to phenomenology. We calculate the masses and decay constants of flavored pions and kaons through next-to-leading order in staggered-valence, staggered-sea mixed-action chiral perturbation theory. We present the results in the valence-valence and valence-sea sectors, for all tastes. As in unmixed theories, the taste-pseudoscalar, valence-valence mesons are exact Goldstone bosons in the chiral limit, at non-zero lattice spacing. The results reduce correctly when the valence and sea quark actions are identical, connect smoothly to the continuum limit, and provide a way to control light quark and gluon discretization errors in lattice calculations performed with different staggered actions for the valence and sea quarks.

Abstract:
We present new sets of fragmentation functions for charged pions and kaons, both at leading and next-to-leading order. They are fitted to TPC data taken at energy $\sqrt s=29$~GeV and describe excellently a wealth of other $e^+e^-$ data on charged-hadron production, ranging from $\sqrt s=5.2$~GeV way up to LEP~1 energy. They also agree with data on the production of neutral pions and kaons, if one makes the natural assumption that the respective fragmentation functions are related to the charged counterparts by SU(2) symmetry. We also list simple parameterizations of the $x$ and $Q^2$ dependence of our results, which may be implemented conveniently in applications.

Abstract:
We present new sets of fragmentation functions for charged pions, charged kaons, and protons, both at the leading and next-to-leading orders. They are fitted to the scaled-momentum distributions of these hadrons measured in e+e- annihilation on the Z-boson resonance at CERN LEP1 and SLAC SLC. These data partly come as light-, charm-, bottom-quark-enriched and gluon-jet samples, which allows us to treat all partons independently, after imposing the SU(2) flavour symmetry relations. In order to gain sensitivity to the scaling violation in fragmentation, we also include data from SLAC PEP, with center-of-mass energy root(s)=29 GeV, in our fits. This allows us to also determine the strong-coupling constant, with a competitive error. LEP1 data on the longitudinal cross section as well as DESY DORIS and PETRA data at lower energies nicely agree with theoretical predictions based on our fragmentation functions.

Abstract:
We calculate the next-to-leading order axial current decay constants of taste non-Goldstone pions and kaons in staggered chiral perturbation theory. This is an extension of the taste Goldstone decay constants calculation to that of the non-Goldstone tastes. We present results for the partially quenched case in the SU(3) and SU(2) staggered chiral perturbation theories and discuss the difference between the taste Goldstone and non-Goldstone cases.

Abstract:
We calculate the axial current decay constants of taste non-Goldstone pions and kaons in staggered chiral perturbation theory through next-to-leading order. The results are a simple generalization of the results for the taste Goldstone case. New low-energy couplings are limited to analytic corrections that vanish in the continuum limit; certain coefficients of the chiral logarithms are modified, but they contain no new couplings. We report results for quenched, fully dynamical, and partially quenched cases of interest in the chiral SU(3) and SU(2) theories.

Abstract:
We calculate the masses of taste non-Goldstone pions and kaons in staggered chiral perturbation theory through next-to-leading order in the standard power counting. The results can be used to quantitatively understand taste violations in existing lattice data generated with staggered fermions and to extract the $u$, $d$, and $s$ quark masses and Gasser-Leutwyler parameters from the experimentally observed spectrum. The expressions for the non-Goldstone masses contain low-energy couplings unique to the non-Goldstone sector. With two exceptions these enter as coefficients of analytic terms; all the new couplings can be fixed by performing spectrum calculations. We report one-loop results for the quenched case and the fully dynamical and partially quenched 1+1+1 and 2+1 flavor cases in the chiral SU(3) and SU(2) theories.

Abstract:
The behavior of kaons and pions in strange quark matter in weak equilibrium, is investigated within the SU(3) Nambu-Jona-Lasinio [NJL] model. This work focuses a region of high densities where the behavior of mesons has not been explored in the framework of this model. It is found that above the density where strange valence quarks appear in the medium, $\rho = 3.8 \rho_0$, a change of behavior of different observables is observed indicating a tendency to the restoration of flavor symmetry. In particular, the splitting between charge multiplets, $K^+, K^-; K^0, {\bar K^0} {and} \pi^+, \pi^-$ decrease and the low energy modes with quantum numbers of $K^-, \bar K^0 {and} \pi^+$, which are excitations of the Fermi sea, are less relevant than for lower densities.

Abstract:
We present results of the masses of taste non-Goldstone $(F \ne \xi_5)$ pions and kaons calculated up to the next-to-leading order in the SU(3) staggered chiral perturbation theory (SChPT). The results can be used to fit data and to understand taste symmetry breaking effect quantitatively. The final expressions for the non-Goldstone masses contain 20 low energy constants unique to the non-Goldstone sector. We have calculated the several cases such as the full QCD, partially quenched QCD, and quenched QCD in the $N_f=1+1+1$ flavor and $N_f=2+1$ flavor cases in the SU(3) and SU(2) SChPT. In this paper, we present only the SU(3) part.

Abstract:
We use the Cottingham method to calculate the pion and kaon electromagnetic mass differences with as few model dependent inputs as possible. The constraints of chiral symmetry at low energy, QCD at high energy and experimental data in between are used in the dispersion relation. We find excellent agreement with experiment for the pion mass difference. The kaon mass difference exhibits a strong violation of the lowest order prediction of Dashen's theorem, in qualitative agreement with several other recent calculations.

Abstract:
Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.