oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
The Double Chooz Experiment  [PDF]
Charles E. Lane
Physics , 2008,
Abstract: The Double Chooz experiment returns to the site of the Chooz experiment with a pair of detectors for a differential neutrino flux measurement, providing sensitivity to sin^2(2theta13) > 0.03. Reaching this goal requires significant improvements in systematic uncertainties, based on the experience with previous reactor neutrino experiments.
The Double Chooz Experiment  [PDF]
Daniel M. Kaplan
Physics , 2006, DOI: 10.1063/1.2402699
Abstract: There is broad consensus in the worldwide physics community as to the need for a new reactor-neutrino experiment to measure or limit the neutrino mixing angle $\theta_{13}$. The Double Chooz Experiment, planned for operation in the years 2008-2011, will search for values of $\sin^2{2\theta_{13}}$ down to $\approx$0.03. This will be the first new information on $\theta_{13}$ in over a decade and will cover most of the remaining parameter space. A quick and relatively inexpensive project is made possible by the existing neutrino laboratory at the Chooz site.
Status of the Double Chooz Experiment  [PDF]
J. V. Dawson
Physics , 2009,
Abstract: The Double Chooz experiment is the first of the next wave of reactor experiments searching for a non-vanishing value of the mixing angle theta_13. The experimental concept and detector design are presented, and the most pertinent backgrounds are discussed. Operation of the far detector is expected to begin by the end of 2009. Installation of the near detector will occur in 2010. Double Chooz has the capacity to measure sin^2(2theta_13) to 3 sigma if sin^2(2theta_13) >0.05 or exclude sin^2 (2theta_13) down to 0.03 at 90% for Delta m_31^2 = 2.5 x 10^-3 eV^2 with three years of data with both near and far detectors.
Double-Chooz Neutrino Experiment  [PDF]
C. Palomares
Physics , 2009,
Abstract: The Double Chooz experiment will use the electron antineutrinos produced by the Chooz nuclear power station to search for a non-vanishing value of the Theta_13 neutrino mixing angle. Double Chooz will be the first of a new generation of neutrino experiments using identical detectors at different distances from the neutrino source to reduce the systematic errors due to the uncertainties on the neutrino flux and to the detector acceptance. The far detector is expected to be operative by the beginning of 2010. Installation of the near detector will occur in 2010.
Afterpulse Measurements of R7081 Photomultipliers for the Double Chooz Experiment  [PDF]
Julia Haser,Florian Kaether,Conradin Langbrandtner,Manfred Lindner,Sebastian Lucht,Stefan Roth,Manuel Schumann,Achim Stahl,Anselm Stueken,Christopher Wiebusch
Physics , 2013, DOI: 10.1088/1748-0221/8/04/P04029
Abstract: We present the results of afterpulse measurements performed as qualification test for 473 inner detector photomultipliers of the Double Chooz experiment. The measurements include the determination of a total afterpulse occurrence probability as well as an average time distribution of these pulses. Additionally, more detailed measurements with different light sources and simultaneous charge and timing measurements were performed with a few photomultipliers to allow a more detailed understanding of the effect. The results of all measurements are presented and discussed.
The Double Chooz reactor neutrino experiment  [PDF]
I. Gil-Botella
Physics , 2007, DOI: 10.1088/1742-6596/110/8/082007
Abstract: The Double Chooz reactor neutrino experiment will be the next detector to search for a non vanishing theta13 mixing angle with unprecedented sensitivity, which might open the way to unveiling CP violation in the leptonic sector. The measurement of this angle will be based in a precise comparison of the antineutrino spectrum at two identical detectors located at different distances from the Chooz nuclear reactor cores in France. Double Chooz is particularly attractive because of its capability to measure sin2(2theta13) to 3 sigmas if sin2(2theta13) > 0.05 or to exclude sin2(2theta13) down to 0.03 at 90% C.L. for Dm2 = 2.5 x 10-3 eV2 in three years of data taking with both detectors. The construction of the far detector starts in 2008 and the first neutrino results are expected in 2009. The current status of the experiment, its physics potential and design and expected performance of the detector are reviewed.
Latest nH analysis in the Double Chooz experiment  [PDF]
Guang Yang
Physics , 2015,
Abstract: Precise measurement of the neutrino mixing angle $\theta_{13}$ is the primary goal of the Double Chooz Experiment (DC), which is located in Chooz, France. The inverse beta decay process provides a unique signature of reactor anti-neutrino interactions, giving prompt signals from positron annihilation and delayed signals from neutron capture by either Gadolinium (Gd) or Hydrogen (H). This paper is dedicated to the latest nH analysis in Double Chooz. Typically, The Gd analysis is primary since fewer background events are involved. However, with accurate estimates of backgrounds and a precise reconstruction of energy, the nH analysis gives a powerful independent measurement of $\theta_{13}$.
The Status of Double Chooz Experiment as a proceeding of PIC 2013 conference  [PDF]
Guang Yang
Physics , 2014,
Abstract: Double Chooz is a long baseline neutrino oscillation experiment at Chooz, France. The purpose of this experiment is to measure the non-zero neutrino oscillation parameter theta13, a parameter for changing electron neutrinos into other neutrinos. This experiment uses reactors of the Chooz Nuclear Power Plant as a neutrino source. Double Chooz has published 2 result papers showing the measurement of the mixing angle, and 3rd publication is processing.
Reactor electron antineutrino disappearance in the Double Chooz experiment  [PDF]
Y. Abe,C. Aberle,J. C. dos Anjos,J. C. Barriere,M. Bergevin,A. Bernstein,T. J. C. Bezerra,L. Bezrukhov,E. Blucher,N. S. Bowden,C. Buck,J. Busenitz,A. Cabrera,E. Caden,L. Camilleri,R. Carr,M. Cerrada,P. -J. Chang,P. Chimenti,T. Classen,A. P. Collin,E. Conover,J. M. Conrad,J. I. Crespo-Anadón,K. Crum,A. Cucoanes,M. V. D'Agostino,E. Damon,J. V. Dawson,S. Dazeley,D. Dietrich,Z. Djurcic,M. Dracos,V. Durand,J. Ebert,Y. Efremenko,M. Elnimr,A. Etenko,M. Fallot,M. Fechner,F. von Feilitzsch,J. Felde,D. Franco,A. J. Franke,M. Franke,H. Furuta,R. Gama,I. Gil-Botella,L. Giot,M. Goger-Neff,L. F. G. Gonzalez,M. C. Goodman,J. TM. Goon,D. Greiner,N. Haag,C. Hagner,T. Hara,F. X. Hartmann,J. Haser,A. Hatzikoutelis,T. Hayakawa,M. Hofmann,G. A. Horton-Smith,A. Hourlier,M. Ishitsuka,J. Jochum,C. Jollet,C. L. Jones,F. Kaether,L. N. Kalousis,Y. Kamyshkov,D. M. Kaplan,T. Kawasaki,G. Keefer,E. Kemp,H. de Kerret,Y. Kibe,T. Konno,D. Kryn,M. Kuze,T. Lachenmaier,C. E. Lane,C. Langbrandtner,T. Lasserre,A. Letourneau,D. Lhuillier,H. P. Lima Jr,M. Lindner,J. M. López-Castan?,J. M. LoSecco,B. K. Lubsandorzhiev,S. Lucht,D. McKee,J. Maeda,C. N. Maesano,C. Mariani,J. Maricic,J. Martino,T. Matsubara,G. Mention,A. Meregaglia,T. Miletic,R. Milincic,H. Miyata,Th. A. Mueller,Y. Nagasaka,K. Nakajima,P. Novella,M. Obolensky,L. Oberauer,A. Onillon,A. Osborn,I. Ostrovskiy,C. Palomares,I. M. Pepe,S. Perasso,P. Perrin,P. Pfahler,A. Porta,W. Potzel,J. Reichenbacher,B. Reinhold,A. Remoto,M. Rohling,R. Roncin,S. Roth
Statistics , 2012, DOI: 10.1103/PhysRevD.86.052008
Abstract: The Double Chooz experiment has observed 8,249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power x detector mass x livetime) exposure using a 10.3 cubic meter fiducial volume detector located at 1050 m from the reactor cores of the Chooz nuclear power plant in France. The expectation in case of theta13 = 0 is 8,937 events. The deficit is interpreted as evidence of electron antineutrino disappearance. From a rate plus spectral shape analysis we find sin^2 2{\theta}13 = 0.109 \pm 0.030(stat) \pm 0.025(syst). The data exclude the no-oscillation hypothesis at 99.8% CL (2.9{\sigma}).
Ortho-positronium observation in the Double Chooz Experiment  [PDF]
Y. Abe,J. C. dos Anjos,J. C. Barriere,E. Baussan,I. Bekman,M. Bergevin,T. J. C. Bezerra,L. Bezrukov,E. Blucher,C. Buck,J. Busenitz,A. Cabrera,E. Caden,L. Camilleri,R. Carr,M. Cerrada,P. -J. Chang,E. Chauveau,P. Chimenti,A. P. Collin,E. Conover,J. M. Conrad,J. I. Crespo-Anadon,K. Crum,A. S. Cucoanes,E. Damon,J. V. Dawson,J. Dhooghe,D. Dietrich,Z. Djurcic,M. Dracos,M. Elnimr,A. Etenko,M. Fallot,F. von Feilitzsch,J. Felde,S. M. Fernandes,V. Fischer,D. Franco,M. Franke,H. Furuta,I. Gil-Botella,L. Giot,M. Goger-Neff,L. F. G. Gonzalez,L. Goodenough,M. C. Goodman,C. Grant,N. Haag,T. Hara,J. Haser,M. Hofmann,G. A. Horton-Smith,A. Hourlier,M. Ishitsuka,J. Jochum,C. Jollet,F. Kaether,L. N. Kalousis,Y. Kamyshkov,D. M. Kaplan,T. Kawasaki,E. Kemp,H. de Kerret,D. Kryn,M. Kuze,T. Lachenmaier,C. E. Lane,T. Lasserre,A. Letourneau,D. Lhuillier,H. P. Lima Jr,M. Lindner,J. M. Lopez-Castano,J. M. LoSecco,B. Lubsandorzhiev,S. Lucht,J. Maeda,C. Mariani,J. Maricic,J. Martino,T. Matsubara,G. Mention,A. Meregaglia,T. Miletic,R. Milincic,A. Minotti,Y. Nagasaka,Y. Nikitenko,P. Novella,L. Oberauer,M. Obolensky,A. Onillon,A. Osborn,C. Palomares,I. M. Pepe,S. Perasso,P. Pfahler,A. Porta,G. Pronost,J. Reichenbacher,B. Reinhold,M. Rohling,R. Roncin,S. Roth,B. Rybolt,Y. Sakamoto,R. Santorelli,A. C. Schilithz,S. Schonert,S. Schoppmann,M. H. Shaevitz,R. Sharankova,S. Shimojima,D. Shrestha,V. Sibille,V. Sinev,M. Skorokhvatov,E. Smith,J. Spitz,A. Stahl,I. Stancu,L. F. F. Stokes,M. Strait,A. Stuken,F. Suekane
Statistics , 2014, DOI: 10.1007/JHEP10(2014)032
Abstract: The Double Chooz experiment measures the neutrino mixing angle $\theta_{13}$ by detecting reactor $\bar{\nu}_e$ via inverse beta decay. The positron-neutron space and time coincidence allows for a sizable background rejection, nonetheless liquid scintillator detectors would profit from a positron/electron discrimination, if feasible in large detector, to suppress the remaining background. Standard particle identification, based on particle dependent time profile of photon emission in liquid scintillator, can not be used given the identical mass of the two particles. However, the positron annihilation is sometimes delayed by the ortho-positronium (o-Ps) metastable state formation, which induces a pulse shape distortion that could be used for positron identification. In this paper we report on the first observation of positronium formation in a large liquid scintillator detector based on pulse shape analysis of single events. The o-Ps formation fraction and its lifetime were measured, finding the values of 44$\%$ $\pm$ 12$\%$ (sys.) $\pm$ 5$\%$ (stat.) and $3.68$ns $\pm$ 0.17ns (sys.) $\pm$ 0.15ns (stat.) respectively, in agreement with the results obtained with a dedicated positron annihilation lifetime spectroscopy setup.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.