Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
MaGICC-WDM: the effects of warm dark matter in hydrodynamical simulations of disc galaxy formation  [PDF]
Jakob Herpich,Gregory S. Stinson,Andrea V. Macciò,Chris Brook,James Wadsley,Hugh M. P. Couchman,Tom Quinn
Physics , 2013, DOI: 10.1093/mnras/stt1883
Abstract: We study the effect of warm dark matter (WDM) on hydrodynamic simulations of galaxy formation as part of the Making Galaxies in a Cosmological Context (MaGICC) project. We simulate three different galaxies using three WDM candidates of 1, 2 and 5 keV and compare results with pure cold dark matter simulations. WDM slightly reduces star formation and produces less centrally concentrated stellar profiles. These effects are most evident for the 1 keV candidate but almost disappear for $m_{\mathrm{WDM}}>2$ keV. All simulations form similar stellar discs independent of WDM particle mass. In particular, the disc scale length does not change when WDM is considered. The reduced amount of star formation in the case of 1 keV particles is due to the effects of WDM on merging satellites which are on average less concentrated and less gas rich. The altered satellites cause a reduced starburst during mergers because they trigger weaker disc instabilities in the main galaxy. Nevertheless we show that disc galaxy evolution is much more sensitive to stellar feedback than it is to WDM candidate mass. Overall we find that WDM, especially when restricted to current observational constraints ($m_{\mathrm{WDM}}>2$ keV), has a minor impact on disc galaxy formation.
The history of stellar metallicity in a simulated disc galaxy  [PDF]
O. N. Snaith,J. Bailin,B. K. Gibson,E. F. Bell,G. Stinson,M. Valluri,J. Wadsley,H. Couchman
Physics , 2015,
Abstract: We explore the chemical distribution of stars in a simulated galaxy. Using simulations of the same initial conditions but with two different feedback schemes (MUGS and MaGICC), we examine the features of the age-metallicity relation (AMR), and the three-dimensional age-metallicity-[O/Fe] distribution, both for the galaxy as a whole and decomposed into disc, bulge, halo, and satellites. The MUGS simulation, which uses traditional supernova feedback, is replete with chemical substructure. This sub- structure is absent from the MaGICC simulation, which includes early feedback from stellar winds, a modified IMF and more efficient feedback. The reduced amount of substructure is due to the almost complete lack of satellites in MaGICC. We identify a significant separation between the bulge and disc AMRs, where the bulge is considerably more metal-rich with a smaller spread in metallicity at any given time than the disc. Our results suggest, however, that identifying the substructure in observations will require exquisite age resolution, on the order of 0.25 Gyr. Certain satellites show exotic features in the AMR, even forming a 'sawtooth' shape of increasing metallicity followed by sharp declines which correspond to pericentric passages. This fact, along with the large spread in stellar age at a given metallicity, compromises the use of metallicity as an age indicator, although alpha abundance provides a more robust clock at early times. This may also impact algorithms that are used to reconstruct star formation histories from resolved stellar populations, which frequently assume a monotonically-increasing AMR.
Structure, Kinematics, and Chemical Enrichment Patterns after Major Gas-Rich Disc-Disc Mergers  [PDF]
Simon Richard,Chris B. Brook,Hugo Martel,Daisuke Kawata,Brad K. Gibson,Patricia Sanchez-Blazquez
Physics , 2009, DOI: 10.1111/j.1365-2966.2009.16008.x
Abstract: We used an N-body smoothed particle hydrodynamics algorithm, with a detailed treatment of star formation, supernovae feedback, and chemical enrichment, to perform eight simulations of mergers between gas-rich disc galaxies. We vary the mass ratio of the progenitors, their rotation axes, and their orbital parameters and analyze the kinematic, structural, and chemical properties of the remnants. Six of these simulations result in the formation of a merger remnant with a disc morphology as a result of the large gas-fraction of the remnants. We show that stars formed during the merger (a sudden starburst occur in our simulation and last for 0.2-0.3 Gyr) and those formed after the merger have different kinematical and chemical properties. The first ones are located in thick disc or the halo. They are partially supported by velocity dispersion and have high [alpha/Fe] ratios even at metallicities as high as [Fe/H]=-0.5. The former ones -- the young component -- are located in a thin disc rotationally supported and have lower [alpha/Fe] ratios. The difference in the rotational support of both components results in the rotation of the thick disc lagging that of the thin disc by as much as a factor of two, as recently observed.We find that, while the kinematic and structural properties of the merger remnant depends strongly upon the orbital parameters of the mergers, there is a remarkable uniformity in the chemical properties of the mergers. This suggests that general conclusions about the chemical signature of gas-rich mergers can be drawn.
MaGICC Disks: Matching Observed Galaxy Relationships Over a Wide Stellar Mass Range  [PDF]
C. B. Brook,G. Stinson,B. K. Gibson,J. Wadsley,T. Quinn
Physics , 2012, DOI: 10.1111/j.1365-2966.2012.21306.x
Abstract: We use the same physical model to simulate four galaxies that match the relation between stellar and total mass, over a mass range that includes the vast majority of disc galaxies. The resultant galaxies, part of the Making Galaxies in a Cosmological Context (MaGICC) program, also match observed relations between luminosity, rotation velocity, size, colour, star formation rate, HI mass, baryonic mass, and metallicity. Radiation from massive stars and supernova energy regulate star formation and drive outflows, balancing the complex interplay between cooling gas, star formation, large scale outflows, and recycling of gas in a manner which correctly scales with the mass of the galaxy. Outflows also play a key role in simulating galaxies with exponential surface brightness profiles, flat rotation curves and dark matter cores. Our study implies that large scale outflows are the primary driver of the dependence of disc galaxy properties on mass. We show that the amount of outflows invoked in our model is required to meet the constraints provided by observations of OVI absorption lines in the circum-galactic-media of local galaxies.
The Main Sequence and the Fundamental Metallicity Relation in MaGICC Galaxies: Evolution and Scatter  [PDF]
A. Obreja,C. B. Brook,G. Stinson,R. Domínguez-Tenreiro,B. K. Gibson,L. Silva,G. L. Granato
Physics , 2014, DOI: 10.1093/mnras/stu891
Abstract: Using cosmological galaxy simulations from the MaGICC project, we study the evolution of the stellar masses, star formation rates and gas phase abundances of star forming galaxies. We derive the stellar masses and star formation rates using observational relations based on spectral energy distributions by applying the new radiative transfer code GRASIL-3D to our simulated galaxies. The simulations match well the evolution of the stellar mass-halo mass relation, have a star forming main sequence that maintains a constant slope out to redshift z $\sim$ 2, and populate projections of the stellar mass - star formation - metallicity plane, similar to observed star forming disc galaxies. We discuss small differences between these projections in observational data and in simulations, and the possible causes for the discrepancies. The light-weighted stellar masses are in good agreement with the simulation values, the differences between the two varying between 0.06 dex and 0.20 dex. We also find a good agreement between the star formation rate tracer and the true (time-averaged) simulation star formation rates. Regardless if we use mass- or light-weighted quantities, our simulations indicate that bursty star formation cycles can account for the scatter in the star forming main sequence.
MAGICC haloes: confronting simulations with observations of the circumgalactic medium at z=0  [PDF]
Greg Stinson,Chris Brook,J. Xavier Prochaska,Joe Hennawi,Andrew Pontzen,Sijing Shen,James Wadsley,Hugh Couchman,Tom Quinn,Andrea V. Macciò,Brad K. Gibson
Physics , 2011, DOI: 10.1111/j.1365-2966.2012.21522.x
Abstract: We explore the circumgalactic medium (CGM) of two simulated star-forming galaxies with luminosities L ~ 0.1 and 1 L* generated using the smooth particle hydrodynamic code GASOLINE. These simulations are part of the Making Galaxies In a Cosmological Context (MAGICC) program in which the stellar feedback is tuned to match the stellar mass-halo mass relationship. For comparison, each galaxy was also simulated using a 'lower feedback' (LF) model which has strength comparable to other implementations in the literature. The 'MAGICC feedback' (MF) model has a higher incidence of massive stars and an approximately two times higher energy input per supernova. Apart from the low-mass halo using LF, each galaxy exhibits a metal-enriched CGM that extends to approximately the virial radius. A significant fraction of this gas has been heated in supernova explosions in the disc and subsequently ejected into the CGM where it is predicted to give rise to substantial O VI absorption. The simulations do not yet address the question of what happens to the O VI when the galaxies stop forming stars. Our models also predict a reservoir of cool H I clouds that show strong Ly\alpha absorption to several hundred kpc. Comparing these models to recent surveys with the Hubble Space Telescope, we find that only the MF models have sufficient O VI and H I gas in the CGM to reproduce the observed distributions. In separate analyses, these same MF models also show better agreement with other galaxy observables (e.g. rotation curves, surface brightness profiles and H I gas distribution). We infer that the CGM is the dominant reservoir of baryons for galaxy haloes.
Why stellar feedback promotes disc formation in simulated galaxies  [PDF]
Hannah übler,Thorsten Naab,Ludwig Oser,Michael Aumer,Laura V. Sales,Simon D. M. White
Physics , 2014, DOI: 10.1093/mnras/stu1275
Abstract: We study how feedback influences baryon infall onto galaxies using cosmological, zoom-in simulations of haloes with present mass $M_{vir}=6.9\times10^{11} M_{\odot}$ to $1.7\times10^{12} M_{\odot}$. Starting at z=4 from identical initial conditions, implementations of weak and strong stellar feedback produce bulge- and disc-dominated galaxies, respectively. Strong feedback favours disc formation: (1) because conversion of gas into stars is suppressed at early times, as required by abundance matching arguments, resulting in flat star formation histories and higher gas fractions; (2) because 50% of the stars form in situ from recycled disc gas with angular momentum only weakly related to that of the z=0 dark halo; (3) because late-time gas accretion is typically an order of magnitude stronger and has higher specific angular momentum, with recycled gas dominating over primordial infall; (4) because 25-30% of the total accreted gas is ejected entirely before z~1, removing primarily low angular momentum material which enriches the nearby inter-galactic medium. Most recycled gas roughly conserves its angular momentum, but material ejected for long times and to large radii can gain significant angular momentum before re-accretion. These processes lower galaxy formation efficiency in addition to promoting disc formation.
MaGICC Thick Disk I: Comparing a Simulated Disk Formed with Stellar Feedback to the Milky Way  [PDF]
G. S. Stinson,J. Bovy,H. -W. Rix,C. Brook,R. Ro?kar,J. J. Dalcanton,A. V. Macciò,J. Wadsley,H. M. P. Couchman,T. R. Quinn
Physics , 2013, DOI: 10.1093/mnras/stt1600
Abstract: We analyse the structure and chemical enrichment of a Milky Way-like galaxy with a stellar mass of 2 10^{10} M_sun, formed in a cosmological hydrodynamical simulation. It is disk-dominated with a flat rotation curve, and has a disk scale length similar to the Milky Way's, but a velocity dispersion that is ~50% higher. Examining stars in narrow [Fe/H] and [\alpha/Fe] abundance ranges, we find remarkable qualitative agreement between this simulation and observations: a) The old stars lie in a thickened distribution with a short scale length, while the young stars form a thinner disk, with scale lengths decreasing, as [Fe/H] increases. b) Consequently, there is a distinct outward metallicity gradient. c) Mono-abundance populations exist with a continuous distribution of scale heights (from thin to thick). However, the simulated galaxy has a distinct and substantive very thick disk (h_z~1.5 kpc), not seen in the Milky Way. The broad agreement between simulations and observations allows us to test the validity of observational proxies used in the literature: we find in the simulation that mono-abundance populations are good proxies for single age populations (<1 Gyr) for most abundances.
The diverse formation histories of simulated disc galaxies  [PDF]
Michael Aumer,Simon D. M. White,Thorsten Naab
Physics , 2014, DOI: 10.1093/mnras/stu818
Abstract: We analyze the formation histories of 19 galaxies from cosmological smoothed particle hydrodynamics zoom-in resimulations. We construct mock three-colour images and show that the models reproduce observed trends in the evolution of galaxy colours and morphologies. However, only a small fraction of galaxies contains bars. Many galaxies go through phases of central mass growth by in-situ star formation driven by gas-rich mergers or misaligned gas infall. These events lead to accretion of low-angular momentum gas to the centres and leave imprints on the distributions of z=0 stellar circularities, radii and metallicities as functions of age. Observations of the evolution of structural properties of samples of disc galaxies at z=2.5-0.0 infer continuous mass assembly at all radii. Our simulations can only explain this if there is a significant contribution from mergers or misaligned infall, as expected in a LambdaCDM universe. Quiescent merger histories lead to high kinematic disc fractions and inside-out growth, but show little central growth after the last `destructive' merger at z>1.5. For sufficiently strong feedback, as assumed in our models, a moderate amount of merging does not seem to be a problem for the z=0 disc galaxy population, but may rather be a requirement. The average profiles of simulated disc galaxies agree with observations at z>=1.5. At z<=1, there is too much growth in size and too little growth in central mass, possibly due to the under-abundance of bars. The discrepancies may partly be caused by differences between the star formation histories of the simulations and those assumed for observations.
The distribution of mass components in simulated disc galaxies  [PDF]
Isabel M. Santos-Santos,Chris B. Brook,Greg Stinson,Arianna Di Cintio,James Wadsley,Rosa Domínguez-Tenreiro,Stefan Gottl?ber,Gustavo Yepes
Physics , 2015, DOI: 10.1093/mnras/stv2335
Abstract: Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed "mass discrepancy--acceleration" relation, which reflects the distribution of the main components of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{\rm flat}$ < 222 km/s where V$_{\rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.