oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Spectroscopy of geo-neutrinos from 2056 days of Borexino data  [PDF]
Borexino collaboration,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,K. Choi,D. DAngelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,G. Fiorentini,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,F. Mantovani,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,M. Montuschi,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,L. Pagani,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,B. Ricci,A. Romani,R. Roncin,N. Rossi,S. Schoenert,D. Semenov,H. Simgen,M. Skorokhavatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Woicik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Statistics , 2015, DOI: 10.1103/PhysRevD.92.031101
Abstract: We report an improved geo-neutrino measurement with Borexino from 2056 days of data taking. The present exposure is $(5.5\pm0.3)\times10^{31}$ proton$\times$yr. Assuming a chondritic Th/U mass ratio of 3.9, we obtain $23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys)$ geo-neutrino events. The null observation of geo-neutrinos with Borexino alone has a probability of $3.6 \times 10^{-9}$ (5.9$\sigma$). A geo-neutrino signal from the mantle is obtained at 98\% C.L. The radiogenic heat production for U and Th from the present best-fit result is restricted to the range 23-36 TW, taking into account the uncertainty on the distribution of heat producing elements inside the Earth.
Observation of Geo-Neutrinos  [PDF]
Borexino Collaboration
Physics , 2010, DOI: 10.1016/j.physletb.2010.03.051
Abstract: Geo-neutrinos, electron anti-neutrinos produced in beta decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. We report the first observation at more than 3$\sigma$ C.L. of geo-neutrinos, performed with the Borexino detector at Laboratori Nazionali del Gran Sasso. Anti-neutrinos are detected through the neutron inverse beta decay reaction. With a 252.6 ton-yr fiducial exposure after all selection cuts, we detected 9.9^{+4.1}_{-3.4}(^{+14.6}_{-8.2}) geo-neutrino events, with errors corresponding to a 68.3%(99.73%) C.L. From the $\ln{\cal{L}}$ profile, the statistical significance of the Borexino geo-neutrino observation corresponds to a 99.997% C.L. Our measurement of the geo-neutrinos rate is 3.9^{+1.6}_{-1.3}(^{+5.8}_{-3.2}) events/(100ton-yr). This measurement rejects the hypothesis of an active geo-reactor in the Earth's core with a power above 3 TW at 95% C.L. The observed prompt positron spectrum above 2.6 MeV is compatible with that expected from european nuclear reactors (mean base line of approximately 1000 km). Our measurement of reactor anti-neutrinos excludes the non-oscillation hypothesis at 99.60% C.L.
Geo-neutrinos  [PDF]
L. Ludhova
Geoscientific Instrumentation, Methods and Data Systems Discussions , 2012, DOI: 10.5194/gid-2-539-2012
Abstract: Geo-neutrinos, electron anti-neutrinos produced in β-decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. After a brief introduction about the Earth (mostly for physicists) and the very basics about the neutrinos and anti-neutrinos (mostly for geologists), I describe the geo-neutrinos' properties and the main aims of their study. An overview of the latest experimental results obtained by KamLand and Borexino experiments is provided. A short overview of future perspectives of this new inter-disciplinary field is given.
Recent Borexino results and prospects for the near future  [PDF]
D. D'Angelo,G. Bellini,J. Benziger,D. Bick,G. Bonfini,M. Buizza Avanzini,B. Caccianiga,L. Cadonati,F. Calaprice,P. Cavalcante,A. Chavarria,A. Chepurnov,S. Davini,A. Derbin,A. Empl,A. Etenko,F. von Feilitzsch,K. Fomenko,D. Franco,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,L. Grandi,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,T. Lewke,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,G. Manuzio,Q. Meindl,E. Meroni,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,N. Rossi,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,J. Winter,M. Wojcik,A. Wright,M. Wurm,J. Xu,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2014,
Abstract: The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.
Review article "Geo-neutrinos"
L. Ludhova
Geoscientific Instrumentation, Methods and Data Systems (GI) & Discussions (GID) , 2012, DOI: 10.5194/gi-1-221-2012
Abstract: Geo-neutrinos, electron anti-neutrinos produced in β-decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. After a brief introduction about the Earth (mostly for physicists) and the very basics about the neutrinos and anti-neutrinos (mostly for geologists), I describe the geo-neutrino properties and the main aims of their study. An overview of the latest experimental results obtained by KamLAND and Borexino experiments is provided. A short overview of future perspectives of this new inter-disciplinary field is given.
The geo-neutrinos  [cached]
Bellini G.
EPJ Web of Conferences , 2012, DOI: 10.1051/epjconf/20122402001
Abstract: The study of the antineutrinos emitted by the radioactive decays in the Earth interior is the only way to investigate how much of the terrestrial heat is produced by these decays and which is their contribution in the various Earth components. The existence of the geo-neutrinos has recently been demonstrated by Borexino and confirmed by Kamland. Kamland had found some hints already in 2005 and 2008 Nevertheless the statistics is not yet enough to discriminate among the various geological models.
Geo-neutrinos  [PDF]
G. Bellini,A. Ianni,L. Ludhova,F. Mantovani,W. F. McDonough
Physics , 2013, DOI: 10.1016/j.ppnp.2013.07.001
Abstract: We review a new interdisciplinary field between Geology and Physics: the study of the Earth's geo-neutrino flux. We describe competing models for the composition of the Earth, present geological insights into the make up of the continental and oceanic crust, those parts of the Earth that concentrate Th and U, the heat producing elements, and provide details of the regional settings in the continents and oceans where operating and planned detectors are sited. Details are presented for the only two operating detectors that are capable of measuring the Earth's geo-neutrinos flux: Borexino and KamLAND; results achieved to date are presented, along with their impacts on geophysical and geochemical models of the Earth. Finally, future planned experiments are highlighted.
Neutrinos and (Anti)neutrinos from Supernovae and from the Earth in the Borexino detector  [PDF]
Lino Miramonti
Physics , 2003,
Abstract: The main goal of the Borexino detector, in its final phase of construction in the Gran Sasso underground laboratory, is the direct observation and measurement of the low energy component of neutrinos coming from the Sun. The unique low energy sensitivity and ultra-low background bring new capabilities to attack problems in neutrino physiscs other than solar ones. Investigation about the study of Supernoavae neutrinos and neutrino coming from the Earth (Geoneutrinos) are here resumed.
New results on solar neutrino fluxes from 192 days of Borexino data  [PDF]
The Borexino Collaboration
Statistics , 2008, DOI: 10.1103/PhysRevLett.101.091302
Abstract: We report the direct measurement of the ^7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is 49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma level. Our result is the first direct measurement of the survival probability for solar nu_e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the magnetic moment of neutrinos.
Science and Technology of BOREXINO: A Real Time Detector for Low Energy Solar Neutrinos SOLAR NEUTRINOS  [PDF]
Borexino Collaboration,G. Alimonti
Physics , 2000, DOI: 10.1016/S0927-6505(01)00110-4
Abstract: BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.