oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Rapidly increasing collimation and magnetic field changes of a H2O maser outflow  [PDF]
G. Surcis,W. H. T. Vlemmings,H. J. van Langevelde,C. Goddi,J. M. Torrelles,J. Cantó,S. Curiel,S. -W. Kim,J. -S. Kim
Physics , 2014, DOI: 10.1051/0004-6361/201423877
Abstract: W75N(B) is a massive star-forming region that contains three radio continuum sources (VLA 1, VLA 2, and VLA 3), which are thought to be three massive young stellar objects at three different evolutionary stages. VLA 1 is the most evolved and VLA 2 the least evolved source. The 22 GHz H2O masers associated with VLA 1 and VLA 2 have been mapped at several epochs over eight years. While the H2O masers in VLA 1 show a persistent linear distribution along a radio jet, those in VLA 2 are distributed around an expanding shell. Furthermore, H2O maser polarimetric measurements revealed magnetic fields aligned with the two structures. Using new polarimetric observations of H2O masers, we aim to confirm the elliptical expansion of the shell-like structure around VLA 2 and, at the same time, to determine if the magnetic fields around the two sources have changed. The NRAO Very Long Baseline Array was used to measure the linear polarization and the Zeeman-splitting of the 22 GHz H2O masers towards the massive star-forming region W75N(B). The H2O maser distribution around VLA 1 is unchanged from that previously observed. We made an elliptical fit of the H2O masers around VLA 2. We find that the shell-like structure is still expanding along the direction parallel to the thermal radio jet of VLA 1. While the magnetic field around VLA 1 has not changed in the past 7 years, the magnetic field around VLA 2 has changed its orientation according to the new direction of the major-axis of the shell-like structure and it is now aligned with the magnetic field in VLA 1.
Observing the onset of outflow collimation in a massive protostar  [PDF]
C. Carrasco-González,J. M. Torrelles,J. Cantó,S. Curiel,G. Surcis,W. H. T. Vlemmings,H. J. van Langevelde,C. Goddi,G. Anglada,S. -W. Kim,J. -S. Kim,J. F. Gómez
Physics , 2015, DOI: 10.1126/science.aaa7216
Abstract: The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic, ionized wind whose morphology evolves as it moves within a toroidal density stratification.
Total linear polarization in the OH maser W75N: VLBA polarization structure  [PDF]
V. I. Slysh,V. Migenes,I. E. Val'tts,S. Yu. Lyubchenko,S. Horiuchi,V. I. Altunin,E. B. Fomalont,M. Inoue
Physics , 2001, DOI: 10.1086/324152
Abstract: W75N is a star-forming region containing various ultracompact HII regions and OH, water, and methanol maser emission. Our VLBA map shows that the OH masers are located in a thin disk rotating around an O-star which is the exciting star of the ultracompact HII region VLA1. A separate set of maser spots is connected with the ultracompact HII region VLA2. The radial velocity of OH maser spots varies across the disk from 3.7 km/s to 10.9 km/s. The diameter of the disk is 4000 A.U. All maser spots are strongly polarized. This are the first OH masers showing nearly 100 per cent linear polarization in several spots. Two maser spots seem to be Zeeman pairs corresponding to a magnetic field of 5.2 mgauss and 7.7 mgauss, and in one case we tentatively found a Zeeman pair consisting of two linearly polarized components. The linearly polarized maser spots are shown to be sigma-components which is the case of the magnetic field being perpendicular to the line of sight. The direction of the magnetic field as determined from linearly polarized spots is perpendicular to the plane of the disk, although the galactic Faraday rotation may significantly affect this conclusion.
Formation and evolution of the water maser outflow event in AFGL 2591 VLA 3-N  [PDF]
M. A. Trinidad,S. Curiel,R. Estalella,J. Cantó,A. Raga,J. M. Torrelles,N. A. Patel,J. F. Gómez,G. Anglada,C. Carrasco-González,L. F. Rodríguez
Physics , 2012, DOI: 10.1093/mnras/sts707
Abstract: In this paper we analyze multi-epoch Very Long Baseline Interferometry (VLBI) water maser observations carried out with the Very Long Baseline Array (VLBA) toward the high-mass star-forming region AFGL 2591. We detected maser emission associated with the radio continuum sources VLA 2 and VLA 3. In addition, a water maser cluster, VLA 3-N, was detected ~ 0.5" north of VLA 3. We concentrate the discussion of this paper on the spatio-kinematical distribution of the water masers towards VLA 3-N. The water maser emission toward the region VLA 3-N shows two bow shock-like structures, Northern and Southern, separated from each other by ~ 100 mas (~ 330 AU). The spatial distribution and kinematics of the water masers in this cluster have persisted over a time span of seven years. The Northern bow shock has a somewhat irregular morphology, while the Southern one has a remarkably smooth morphology. We measured the proper motions of 33 water maser features, which have an average proper motion velocity of ~ 1.3 mas/yr (~ 20 km/s). The morphology and the proper motions of this cluster of water masers show systematic expanding motions that could imply one or two different centers of star formation activity. We made a detailed model for the Southern structure, proposing two different kinematic models to explain the 3-dimensional spatio-kinematical distribution of the water masers: (1) a static central source driving the two bow-shock structures; (2) two independent driving sources, one of them exciting the Northern bow-shock structure, and the other one, a young runaway star moving in the local molecular medium exciting and molding the remarkably smoother Southern bow-shock structure. Future observations will be necessary to discriminate between the two scenarios, in particular by identifying the still unseen driving source(s).
The structure of the magnetic field in the massive star-forming region W75N  [PDF]
G. Surcis,W. H. T. Vlemmings,S. Curiel,B. Hutawarakorn Kramer,J. M. Torrelles,A. P. Sarma
Physics , 2011, DOI: 10.1051/0004-6361/201015825
Abstract: A debated topic in star formation theory is the role of magnetic fields during the protostellar phase of high-mass stars. It is still unclear how magnetic fields influence the formation and dynamics of massive disks and outflows. Most current information on magnetic fields close to high-mass protostars comes from polarized maser emissions, which allows us to investigate the magnetic field on small scales by using very long-baseline interferometry. The massive star-forming region W75N contains three radio continuum sources (VLA1, VLA2, and VLA3), at three different evolutionary stages, and associated masers, while a large-scale molecular bipolar outflow is also present. Very recently, polarization observations of the 6.7 GHz methanol masers at milliarsecond resolution have been able to probe the strength and structure of the magnetic field over more than 2000 AU around VLA1. The magnetic field is parallel to the outflow, suggesting that VLA1 is its powering source. The observations of water masers at 22 GHz can give more information about the gas dynamics and the magnetic fields around VLA1 and VLA2. The NRAO Very Long Baseline Array was used to measure the linear polarization and the Zeeman-splitting of the 22 GHz water masers in the star-forming region W75N. We detected 124 water masers, 36 around VLA1 and 88 around VLA2 of W75N, which indicate two different physical environments around the two sources, where VLA1 is in a more evolved state. The linear polarization of the masers confirms the tightly ordered magnetic field around VLA1, which is aligned with the large-scale molecular outflow, and also reveals an ordered magnetic field around VLA2, which is not parallel to the outflow. [abridged]
Methanol masers probing the ordered magnetic field of W75N  [PDF]
G. Surcis,W. H. T. Vlemmings,R. Dodson,H. J. van Langevelde
Physics , 2009, DOI: 10.1051/0004-6361/200912790
Abstract: The role of magnetic fields during the protostellar phase of high-mass star-formation is a debated topic. In particular, it is still unclear how magnetic fields influence the formation and dynamic of disks and outflows. Most current information on magnetic fields close to high-mass protostars comes from H2O and OH maser observations. Recently, the first 6.7 GHz methanol maser polarization observations were made, and they reveal strong and ordered magnetic fields. The morphology of the magnetic field during high-mass star-formation needs to be investigated on small scales, which can only be done using very long baseline interferometry observations. The massive star-forming regionW75N contains three radio sources and associated masers, while a large-scale molecular bipolar outflow is also present. Polarization observations of the 6.7 GHz methanol masers at high angular resolution probe the strength and structure of the magnetic field and determine its relation to the outflow. Eight of the European VLBI network antennas were used to measure the linear polarization and Zeeman-splitting of the 6.7 GHz methanol masers in the star-forming region W75N. We detected 10 methanol maser features, 4 of which were undetected in previous work. All arise near the source VLA1 of W75N. The linear polarization of the masers reveals a tightly ordered magnetic field over more than 2000 AU around VLA1 that is exactly aligned with the large-scale molecular outflow. This is consistent with the twisted magnetic field model proposed for explaining dust polarization observations. The Zeeman-splitting measured on 3 of the maser features indicates a dynamically important magnetic field in the maser region of the order of 50mG. We suggest VLA1 is the powering sources of the bipolar outflow.
Water maser kinematics in massive star-forming regions: Cepheus A and W75N  [PDF]
J. M. Torrelles,N. A. Patel,S. Curiel,J. F. Gómez,G. Anglada,R. Estalella
Physics , 2012,
Abstract: VLBI multi-epoch water maser observations are a powerful tool to study the dense, warm shocked gas very close to massive protostars. The very high-angular resolution of these observations allow us to measure the proper motions of the masers in a few weeks, and together with the radial velocity, to determine their full kinematics. In this paper we present a summary of the main observational results obtained toward the massive star-forming regions of Cepheus A and W75N, among them: (i) the identification of different centers of high-mass star formation activity at scales of 100 AU; (ii) the discovery of new phenomena associated with the early stages of high-mass protostellar evolution (e.g., isotropic gas ejections); and (iii) the identification of the simultaneous presence of a wide-angle outflow and a highly collimated jet in the massive object Cep A HW2, similar to what is observed in some low-mass protostars. Some of the implications of these results in the study of high-mass star formation are discussed.
Flares and Proper Motions of Ground-State OH Masers in W75N  [PDF]
Vincent L. Fish,Malcolm Gray,W. M. Goss,A. M. S. Richards
Physics , 2011, DOI: 10.1111/j.1365-2966.2011.19297.x
Abstract: The star-forming region W75N hosts bright OH masers that are observed to be variable. We present observations taken in 2008 of the ground-state OH maser transitions with the Very Long Baseline Array (VLBA) and the Multi-Element Radio-Linked Interferometer Network (MERLIN) and with the Nancay Radio Telescope in 2011. Several of the masers in W75N were observed to be flaring, with the brightest 1720-MHz maser in excess of 400 Jy. The 1720-MHz masers appear to be associated with the continuum source VLA 1, unlike the bright flaring 1665- and 1667-MHz masers, which are associated with VLA 2. The 1720-MHz masers are located in an outflow traced by water masers and are indicative of very dense molecular material near the H II region. The magnetic field strengths are larger in the 1720-MHz maser region than in most regions hosting only main-line OH masers. The density falls off along the outflow, and the order of appearance of different transitions of OH masers is consistent with theoretical models. The 1665- and 1667-MHz VLBA data are compared against previous epochs over a time baseline of over 7 years. The median maser motion is 3.5 km/s, with a scatter that is comparable to thermal turbulence. The general pattern of maser proper motions observed in the 1665- and 1667-MHz transitions is consistent with previous observations.
Our World as an Expanding Shell  [PDF]
Merab Gogberashvili
Physics , 1998, DOI: 10.1209/epl/i2000-00162-1
Abstract: In the model where the Universe is considered as a thin shell expanding in 5-dimensional hyper-space there is a possibility to have just one scale for a particle theory corresponding to the Universe thickness. From a realistic model the relation of this parameter to the Universe size was found.
Multi-epoch VLBA H$_2$O maser observations toward the massive YSOs AFGL 2591 VLA 2 and VLA 3  [PDF]
J. M. Torrelles,M. A. Trinidad,S. Curiel,R. Estalella,N. A. Patel,J. F. Gómez,G. Anglada,C. Carrasco-González,J. Cantó,A. Raga,L. F. Rodríguez
Physics , 2013, DOI: 10.1093/mnras/stt2177
Abstract: We present multi-epoch Very Long Baseline Array (VLBA) H$_2$O maser observations toward the massive young stellar objects (YSOs) VLA 2 and VLA 3 in the star-forming region AFGL 2591. Through these observations, we have extended the study of the evolution of the masers towards these objects up to a time span of $\sim$ 10 yrs, measuring their radial velocities and proper motions. The H$_2$O masers in VLA 3, the most massive YSO in AFGL 2591 ($\sim$ 30--40~M$_{\odot}$), are grouped within projected distances of $\lesssim$ 40 mas ($\lesssim$ 130 AU) from VLA 3. In contrast to other H$_2$O masers in AFGL 2591, the masers associated with VLA 3 are significantly blueshifted (up to $\sim$ 30 km s$^{-1}$) with respect to the velocity of the ambient molecular cloud. We find that the H$_2$O maser cluster as a whole, has moved westwards of VLA~3 between the 2001 and 2009 observations, with a proper motion of $\sim$ 1.2 mas yr$^{-1}$ ($\sim$ 20 km s$^{-1}$). We conclude that these masers are tracing blueshifted outflowing material, shock excited at the inner parts of a cavity seen previously in ammonia molecular lines and infrared images, and proposed to be evacuated by the outflow associated with the massive VLA 3 source. The masers in the region of VLA 2 are located at projected distances of $\sim$ 0.7$''$ ($\sim$ 2300 AU) north from this source, with their kinematics suggesting that they are excited by a YSO other than VLA 2. This driving source has not yet been identified.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.