oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Tidal dissipation in stars and giant planets  [PDF]
Gordon I. Ogilvie
Physics , 2014, DOI: 10.1146/annurev-astro-081913-035941
Abstract: Astrophysical fluid bodies that orbit close to one another induce tidal distortions and flows that are subject to dissipative processes. The spin and orbital motions undergo a coupled evolution over astronomical timescales, which is relevant for many types of binary star, short-period extrasolar planetary systems and the satellites of the giant planets in the solar system. I review the principal mechanisms that have been discussed for tidal dissipation in stars and giant planets in both linear and nonlinear regimes. I also compare the expectations based on theoretical models with recent observational findings.
Unravelling tidal dissipation in gaseous giant planets  [PDF]
Mathieu Guenel,Stéphane Mathis,Fran?oise Remus
Physics , 2014, DOI: 10.1051/0004-6361/201424010
Abstract: Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. New constraints are now obtained both in the Solar and exoplanetary systems. Tidal dissipation in planets is intrinsically related to their internal structure. In particular, fluid and solid layers behave differently under tidal forcing. Therefore, their respective dissipation reservoirs have to be compared. In this letter, we compute separately the contributions of the potential dense rocky/icy core and the convective fluid envelope of gaseous giant planets, as a function of core size and mass. We then compare the associated dissipation reservoirs, by evaluating the frequency-average of the imaginary part of the Love numbers $k^2_2$ in each region. In the case of Jupiter and Saturn-like planets, we show that the viscoelastic dissipation in the core could dominate the turbulent friction acting on tidal inertial waves in the envelope. However, the fluid dissipation would not be negligible. This demonstrates that it is necessary to build complete models of tidal dissipation in planetary interiors from their deep interior to their surface without any arbitrary a-priori.
Melting the core of giant planets: impact on tidal dissipation  [PDF]
S. Mathis
Physics , 2015,
Abstract: Giant planets are believed to host central dense rocky/icy cores that are key actors in the core-accretion scenario for their formation. In the same time, some of their components are unstable in the temperature and pressure regimes of central regions of giant planets and only ab-initio EOS computations can address the question of the state of matter. In this framework, several works demonstrated that erosion and redistribution of core materials in the envelope must be taken into account. These complex mechanisms thus may deeply modify giant planet interiors for which signatures of strong tidal dissipation have been obtained for Jupiter and Saturn. The best candidates to explain this dissipation are the viscoelastic dissipation in the central dense core and turbulent friction acting on tidal inertial waves in their fluid convective envelope. In this work, we study the consequences of the possible melting of central regions for the efficiency of each of these mechanisms.
Anelastic tidal dissipation in multi-layer planets  [PDF]
F. Remus,S. Mathis,J. -P. Zahn,V. Lainey
Physics , 2012, DOI: 10.1051/0004-6361/201118595
Abstract: Earth-like planets have viscoelastic mantles, whereas giant planets may have viscoelastic cores. The tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on their rheology and on the tidal frequency. Therefore, modelling tidal interactions presents a high interest to provide constraints on planets' properties and to understand their history and their evolution, in our Solar System or in exoplanetary systems. We examine the equilibrium tide in the anelastic parts of a planet whatever the rheology, taking into account the presence of a fluid envelope of constant density. We show how to obtain the different Love numbers that describe its tidal deformation. Thus, we discuss how the tidal dissipation in solid parts depends on the planet's internal structure and rheology. Finally, we show how the results may be implemented to describe the dynamical evolution of planetary systems. The first manifestation of the tide is to distort the shape of the planet adiabatically along the line of centers. Then, the response potential of the body to the tidal potential defines the complex Love numbers whose real part corresponds to the purely adiabatic elastic deformation, while its imaginary part accounts for dissipation. This dissipation is responsible for the imaginary part of the disturbing function, which is implemented in the dynamical evolution equations, from which we derive the characteristic evolution times. The rate at which the system evolves depends on the physical properties of tidal dissipation, and specifically on how the shear modulus varies with tidal frequency, on the radius and also the rheological properties of the solid core. The quantification of the tidal dissipation in solid cores of giant planets reveals a possible high dissipation which may compete with dissipation in fluid layers.
Understanding tidal dissipation in gaseous giant planets from their core to their surface  [PDF]
M. Guenel,S. Mathis,F. Remus
Physics , 2014, DOI: 10.1051/epjconf/201510106029
Abstract: Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. Tidal dissipation in planets is intrinsically related to their internal structure. In particular, fluid and solid layers behave differently under tidal forcing. Therefore, their respective dissipation reservoirs have to be compared. In this work, we compute separately the contributions of the potential dense rocky/icy core and of the convective fluid envelope of gaseous giant planets, as a function of core size and mass. We demonstrate that in general both mechanisms must be taken into account.
Understanding tidal dissipation in gaseous giant planets : the respective contributions of their core and envelope  [PDF]
M. Guenel,S. Mathis,F. Remus
Physics , 2014,
Abstract: Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. New constraints are now obtained both in the Solar and exoplanetary systems. Tidal dissipation in planets is intrinsically related to their internal structure. In particular, fluid and solid layers behave differently under tidal forcing. Therefore, their respective dissipation reservoirs have to be compared. In this work, we compute separately the contributions of the potential dense rocky/icy core and of the convective fluid envelope of gaseous giant planets, as a function of core size and mass. We then compare the associated dissipation reservoirs, by evaluating the frequency-average of the imaginary part of the Love numbers $k^2_2$ in each region. We demonstrate that in general both mechanisms must be taken into account.
Secular Effects of Tidal Damping in Compact Planetary Systems  [PDF]
Bradley M. S. Hansen,Norman Murray
Physics , 2014, DOI: 10.1093/mnras/stv049
Abstract: We describe the long-term evolution of compact systems of terrestrial planets, using a set of simulations that match the statistical properties of the observed exoplanet distribution. The evolution is driven by tidal dissipation in the planetary interiors, but the systems evolve as a whole due to secular gravitational interactions. We find that, for Earth-like dissipation levels, planetary orbits can be circularised out to periods of order 100 days, an order of magnitude larger than is possible for single planets. The resulting distribution of eccentricities is a qualitative match to that inferred from transit timing variations, with a minority of non-zero eccentricities maintained by particular secular configurations. The coupling of the tidal and secular processes enhance the inward migration of the innermost planets in these systems, and can drive them to short orbital periods. Resonant interactions of both the mean motion and secular variety are observed, although the interactions are not strong enough to drive systemic instability in most cases. However, we demonstrate that these systems can easily be driven unstable if coupled to giant planets on longer period orbits.
Viscoelastic Tidal Dissipation in Giant Planets and Formation of Hot Jupiters Through High-Eccentricity Migration  [PDF]
Natalia I Storch,Dong Lai
Physics , 2013, DOI: 10.1093/mnras/stt2292
Abstract: We study the possibility of tidal dissipation in the solid cores of giant planets and its implication for the formation of hot Jupiters through high-eccentricity migration. We present a general framework by which the tidal evolution of planetary systems can be computed for any form of tidal dissipation, characterized by the imaginary part of the complex tidal Love number, ${\rm Im}[{\tilde k}_2(\omega)]$, as a function of the forcing frequency $\omega$. Using the simplest viscoelastic dissipation model (the Maxwell model) for the rocky core and including the effect of a nondissipative fluid envelope, we show that with reasonable (but uncertain) physical parameters for the core (size, viscosity and shear modulus), tidal dissipation in the core can accommodate the tidal-Q constraint of the Solar system gas giants and at the same time allows exoplanetary hot Jupiters to form via tidal circularization in the high-e migration scenario. By contrast, the often-used weak friction theory of equilibrium tide would lead to a discrepancy between the Solar system constraint and the amount of dissipation necessary for high-e migration. We also show that tidal heating in the rocky core can lead to modest radius inflation of the planets, particularly when the planets are in the high-eccentricity phase ($e\sim 0.6$) during their high-e migration. Finally, as an interesting by-product of our study, we note that for a generic tidal response function ${\rm Im}[{\tilde k}_2(\omega)]$, it is possible that spin equilibrium (zero torque) can be achieved for multiple spin frequencies (at a given $e$), and the actual pseudo-synchronized spin rate depends on the evolutionary history of the system.
Tidal dissipation and the formation of Kepler near-resonant planets  [PDF]
J. -B. Delisle,J. Laskar
Physics , 2014, DOI: 10.1051/0004-6361/201424227
Abstract: Multi-planetary systems detected by the Kepler mission present an excess of planets close to first-order mean-motion resonances (2:1 and 3:2) but with a period ratio slightly higher than the resonant value. Several mechanisms have been proposed to explain this observation. Here we provide some clues that these near-resonant systems were initially in resonance and reached their current configuration through tidal dissipation. The argument that has been opposed to this scenario is that it only applies to the close-in systems and not to the farthest ones for which the tidal effect is too weak. Using the catalog of KOI of the Kepler mission, we show that the distributions of period ratio among the most close-in planetary systems and the farthest ones differ significantly. This distance dependent repartition is a strong argument in favor of the tidal dissipation scenario.
The surface signature of the tidal dissipation of the core in a two-layer planet  [PDF]
F. Remus,S. Mathis,J. -P. Zahn,V. Lainey
Physics , 2014, DOI: 10.1051/0004-6361/201424472
Abstract: Tidal dissipation, which is directly linked to internal structure, is one of the key physical mechanisms that drive systems evolution and govern their architecture. A robust evaluation of its amplitude is thus needed to predict evolution time for spins and orbits and their final states. The purpose of this paper is to refine recent model of the anelastic tidal dissipation in the central dense region of giant planets, commonly assumed to retain a large amount of heavy elements, which constitute an important source of dissipation. The previous paper evaluated the impact of the presence of the static fluid envelope on the tidal deformation of the core and on the associated anelastic tidal dissipation, through the tidal quality factor Qc. We examine here its impact on the corresponding effective anelastic tidal dissipation, through the effective tidal quality factor Qp. We show that the strength of this mechanism mainly depends on mass concentration. In the case of Jupiter- and Saturn-like planets, it can increase their effective tidal dissipation by, around, a factor 2.4 and 2 respectively. In particular, the range of the rheologies compatible with the observations is enlarged compared to the results issued from previous formulations. We derive here an improved expression of the tidal effective factor Qp in terms of the tidal dissipation factor of the core Qc, without assuming the commonly used assumptions. When applied to giant planets, the formulation obtained here allows a better match between the an elastic core's tidal dissipation of a two-layer model and the observations.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.