Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Detection of an asymmetry in the envelope of the carbon Mira R Fornacis using VLTI/MIDI  [PDF]
C. Paladini,S. Sacuto,D. Klotz,K. Ohnaka,M. Wittkowski,W. Nowotny,A. Jorissen,J. Hron
Physics , 2012, DOI: 10.1051/0004-6361/201219831
Abstract: Aims. We present a study of the envelope morphology of the carbon Mira R For with VLTI/MIDI. This object is one of the few asymptotic giant branch (AGB) stars that underwent a dust-obscuration event. The cause of such events is still a matter of discussion. Several symmetric and asymmetric scenarios have been suggested in the literature. Methods. Mid-infrared interferometric observations were obtained separated by two years. The observations probe different depths of the atmosphere and cover different pulsation phases. The visibilities and the differential phases were interpreted using GEM-FIND, a tool for fitting spectrally dispersed interferometric observations with the help of wavelength-dependent geometric models. Results. We report the detection of an asymmetric structure revealed through the MIDI differential phase. This asymmetry is observed at the same baseline and position angle two years later. The observations are best simulated with a model that includes a uniform-disc plus a Gaussian envelope plus a point-source. The geometric model can reproduce both the visibilities and the differential phase signatures. Conclusions. Our MIDI data favour explanations of the R For obscuration event that are based on an asymmetric geometry. We clearly detect a photocentre shift between the star and the strongly resolved dust component. This might be caused by a dust clump or a substellar companion. However, the available observations do not allow us to distinguish between the two options. The finding has strong implications for future studies of the geometry of the envelope of AGB stars: if this is a binary, are all AGB stars that show an obscuration event binaries as well? Or are we looking at asymmetric mass-loss processes (i.e. dusty clumps) in the inner part of a carbon-rich Mira?
The geometry of the close environment of SV Psc as probed by VLTI/MIDI  [PDF]
D. Klotz,S. Sacuto,F. Kerschbaum,C. Paladini,H. Olofsson,J. Hron
Physics , 2012, DOI: 10.1051/0004-6361/201118290
Abstract: Context. SV Psc is an asymptotic giant branch (AGB) star surrounded by an oxygen-rich dust envelope. The mm-CO line profile of the object's outflow shows a clear double-component structure. Because of the high angular resolution, mid-IR interferometry may give strong constraints on the origin of this composite profile. Aims. The aim of this work is to investigate the morphology of the environment around SV Psc using high-angular resolution interferometry observations in the mid-IR with the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI). Methods. Interferometric data in the N-band taken at different baseline lengths (ranging from 32-64 m) and position angles (73- 142{\deg}) allow a study of the morphology of the circumstellar environment close to the star. The data are interpreted on the basis of 2-dimensional, chromatic geometrical models using the fitting software tool GEM-FIND developed for this purpose. Results. The results favor two scenarios: (i) the presence of a highly inclined, optically thin, dusty disk surrounding the central star; (ii) the presence of an unresolved binary companion at a separation of 13.7 AU and a position angle of 121.8{\deg} NE. The derived orbital period of the binary is 38.1 yr. This detection is in good agreement with hydrodynamic simulations showing that a close companion could be responsible for the entrainment of the gas and dust into a circumbinary structure.
Modelling the atmosphere of the carbon-rich Mira RU Vir  [PDF]
G. Rau,C. Paladini,J. Hron,B. Aringer,M. A. T. Groenewegen,W. Nowotny
Physics , 2015, DOI: 10.1051/0004-6361/201526418
Abstract: Context. We study the atmosphere of the carbon-rich Mira RU Vir using the mid-infrared high spatial resolution interferometric observations from VLTI/MIDI. Aims. The aim of this work is to analyse the atmosphere of the carbon-rich Mira RU Vir, with state of the art models, in this way deepening the knowledge of the dynamic processes at work in carbon-rich Miras. Methods. We compare spectro-photometric and interferometric measurements of this carbon-rich Mira AGB star, with the predictions of different kinds of modelling approaches (hydrostatic model atmospheres plus MOD-More Of Dusty, self-consistent dynamic model atmospheres). A geometric model fitting tool is used for a first interpretation of the interferometric data. Results. The results show that a joint use of different kind of observations (photometry, spectroscopy, interferometry) is essential to shed light on the structure of the atmosphere of a carbon-rich Mira. The dynamic model atmospheres fit well the ISO spectrum in the wavelength range {\lambda} = [2.9, 25.0] {\mu}m. Nevertheless, a discrepancy is noticeable both in the SED (visible), and in the visibilities (shape and level). A possible explanation are intra-/inter-cycle variations in the dynamic model atmospheres as well as in the observations. The presence of a companion star and/or a disk or a decrease of mass loss within the last few hundred years cannot be excluded but are considered unlikely.
Radio and IR interferometry of SiO maser stars  [PDF]
M. Wittkowski,D. A. Boboltz,M. D. Gray,E. M. L. Humphreys,I. Karovicova,M. Scholz
Physics , 2012, DOI: 10.1017/S1743921312006989
Abstract: Radio and infrared interferometry of SiO maser stars provide complementary information on the atmosphere and circumstellar environment at comparable spatial resolution. Here, we present the latest results on the atmospheric structure and the dust condensation region of AGB stars based on our recent infrared spectro-interferometric observations, which represent the environment of SiO masers. We discuss, as an example, new results from simultaneous VLTI and VLBA observations of the Mira variable AGB star R Cnc, including VLTI near- and mid-infrared interferometry, as well as VLBA observations of the SiO maser emission toward this source. We present preliminary results from a monitoring campaign of high-frequency SiO maser emission toward evolved stars obtained with the APEX telescope, which also serves as a precursor of ALMA images of the SiO emitting region. We speculate that large-scale long-period chaotic motion in the extended molecular atmosphere may be the physical reason for observed deviations from point symmetry of atmospheric molecular layers, and for the observed erratic variability of high-frequency SiO maser emission
Pre-maximum spectro-imaging of the Mira star T Lep with AMBER/VLTI  [PDF]
Jean-Baptiste Le Bouquin,Sylvestre Lacour,Stephanie Renard,Eric Thiebaut,Antoine Merand,Tijl Verhoelst
Physics , 2009, DOI: 10.1051/0004-6361/200811579
Abstract: Diffuse envelopes around Mira variables are among the most important sources influencing the chemical evolution of galaxies. However they represent an observational challenge because of their complex spectral features and their rapid temporal variability. We constrained the exact brightness distribution of the Mira star TLep with a model-independent analysis. We obtained single-epoch interferometric observations with a dataset continuous in the spectral domain (1.5-2.4mum) and in the spatial domain (baselines ranging from 11 to 96m). We performed a model independent image reconstruction for each spectral bin using the MIRA software. We completed the analysis by modeling the data with a simple star+layer model inspired from the images. Reconstructed images confirm the general picture of a central star partially obscured by the surrounding molecular shell of changing opacity. At 1.7mum, the shell becomes optically thin, with corresponding emission appearing as a ring circling the star. This is the first direct evidence of the spherical morphology of the molecular shell. Model fitting confirmed a spherical layer of constant size and changing opacity over the wavelengths. Rough modeling points to a continuum opacity within the shell, in addition to the CO and H2O features. Accordingly, it appeared impossible to model the data by a photosphere alone in any of the spectral bins.
VLTI/AMBER spectro-interferometric imaging of VX Sgr's inhomogenous outer atmosphere  [PDF]
A. Chiavassa,S. Lacour,F. Millour,T. Driebe,M. Wittkowski,B. Plez,E. Thiebeaut,E. Josselin,B. Freytag,M. Scholz,X. Haubois
Physics , 2009, DOI: 10.1051/0004-6361/200913288
Abstract: Aims. We aim to explore the photosphere of the very cool late-type star VX Sgr and in particular the existence and characterization of molecular layers above the continuum forming photosphere. Methods. We obtained interferometric observations with the VLTI/AMBER interferometer using the fringe tracker FINITO in the spectral domain 1.45-2.50 micron with a spectral resolution of about 35 and baselines ranging from 15 to 88 meters.We perform independent image reconstruction for different wavelength bins and fit the interferometric data with a geometrical toy model.We also compare the data to 1D dynamical models of Miras atmosphere and to 3D hydrodynamical simulations of red supergiant (RSG) and asymptotic giant branch (AGB) stars. Results. Reconstructed images and visibilities show a strong wavelength dependence. The H-band images display two bright spots whose positions are confirmed by the geometrical toy model. The inhomogeneities are qualitatively predicted by 3D simulations. At about 2,00 micron and in the region 2,35 - 2,50 micron, the photosphere appears extended and the radius is larger than in the H band. In this spectral region, the geometrical toy model locates a third bright spot outside the photosphere that can be a feature of the molecular layers. The wavelength dependence of the visibility can be qualitatively explained by 1D dynamical models of Mira atmospheres. The best-fitting photospheric models show a good match with the observed visibilities and give a photospheric diameter of theta = 8,82+-0,50 mas. The H2O molecule seems to be the dominant absorber in the molecular layers. Conclusions. We show that the atmosphere of VX Sgr rather resembles Mira/AGB star model atmospheres than RSG model atmospheres. In particular, we see molecular (water) layers that are typical for Mira stars.
The wind of the M-type AGB star RT Virginis probed by VLTI/MIDI  [PDF]
Stéphane Sacuto,Sofia Ramstedt,Susanne H?fner,Hans Olofsson,Sara Bladh,Kjell Eriksson,Bernhard Aringer,Daniela Klotz,Matthias Maercker
Physics , 2013, DOI: 10.1051/0004-6361/201220524
Abstract: We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is to provide observational constraints on theoretical prediction that the winds of M-type AGB objects can be driven by photon scattering on iron-free silicate grains located in the close environment (about 2 to 3 stellar radii) of the star. We interpreted spectro-interferometric data, first using wavelength-dependent geometric models. We then used a self-consistent dynamic model atmosphere containing a time-dependent description of grain growth for pure forsterite dust particles to reproduce the photometric, spectrometric, and interferometric measurements of RT Vir. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort was first made to determine these parameters. MIDI differential phases reveal the presence of an asymmetry in the stellar vicinity. Results from the geometrical modeling give us clues to the presence of aluminum and silicate dust in the close circumstellar environment (< ~5 stellar radii). Comparison between spectro-interferometric data and a self-consistent dust-driven wind model reveals that silicate dust has to be present in the region between 2 to 3 stellar radii to reproduce the 59 and 63 m baseline visibility measurements around 9.8 micron. This gives additional observational evidence in favor of winds driven by photon scattering on iron-free silicate grains located in the close vicinity of an M-type star. However, other sources of opacity are clearly missing to reproduce the 10-13 micron visibility measurements for all baselines. This study is a first attempt to understand the wind mechanism of M-type AGB stars by comparing photometric, spectrometric, and interferometric measurements with state-of-the-art, self-consistent dust-driven wind models. The agreement of the dynamic model atmosphere with interferometric measurements in the 8-10 micron spectral region gives additional observational evidence that the winds of M-type stars can be driven by photon scattering on iron-free silicate grains. Finally, a larger statistical study and progress in advanced self-consistent 3D modeling are still required to solve the remaining problems.
Multi-epoch imaging polarimetry of the SiO masers in the extended atmosphere of the Mira variable TX Cam  [PDF]
Athol J. Kemball,Phillip J. Diamond,Ioannis Gonidakis,Modhurita Mitra,Kijeong Yim,Kuo-Chuan Pan,Hsin-Fang Chiang
Physics , 2009, DOI: 10.1088/0004-637X/698/2/1721
Abstract: We present a time series of synoptic images of the linearly-polarized v=1, J=1-0 SiO maser emission toward the Mira variable, TX Cam. These data comprise 43 individual epochs at an approximate biweekly sampling over an optical pulsation phase range of 0.68 to 1.82. The images have an angular resolution of ~500 microarcsec and were obtained using the Very Long Baseline Array (VLBA), operating in the 43 GHz band in spectral-line, polarization mode. We have previously published the total intensity time series for this pulsation phase range; this paper serves to present the linearly-polarized image sequence and an associated animation representing the evolution of the linear polarization morphology over time. We find a predominantly tangential polarization morphology, a high degree of persistence in linear polarization properties over individual component lifetimes, and stronger linear polarization in the inner projected shell than at larger projected shell radii. We present an initial polarization proper motion analysis examining the possible dynamical influence of magnetic fields in component motions in the extended atmospheres of late-type, evolved stars.
Calibrating the Cepheid Period-Luminosity relation with the VLTI  [PDF]
M. Marengo,M. Karovska,D. Sasselov,C. Papaliolios,J. T. Armstrong,T. E. Nordgren
Physics , 2002, DOI: 10.1051/eas:2003026
Abstract: The VLTI is the ideal instrument for measuring the distances of nearby Cepheids with the Baade-Wesselink method, allowing an accurate recalibration of the Cepheid Period-Luminosity relation. The high accuracy required by such measurement, however, can only be reached taking into account the effects of limb darkening, and its dependence on the Cepheid pulsations. We present here our new method to compute phase- and wavelength-dependent limb darkening profiles, based on hydrodynamic simulation of Classical Cepheid atmospheres.
Distances on Cosmological Scales with VLTI  [PDF]
Margarita Karovska,Martin Elvis,Massimo Marengo
Physics , 2003, DOI: 10.1023/A:1026104932701
Abstract: We present here a new method using interferometric measurements of quasars, that allows the determination of direct geometrical distances on cosmic scales. Quasar Broad Emission Line Regions sizes provide a "meter rule" with which to measure the metric of the Universe. This method is less dependent of model assumptions, and even of variations in the fundamental constants (other than c). We discuss the spectral and spatial requirements on the VLTI observations needed to carry out these measurements.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.