oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Exclusion, Discovery and Identification of Dark Matter with Directional Detection  [PDF]
J. Billard,F. Mayet,D. Santos
Physics , 2011, DOI: 10.1051/eas/1253009
Abstract: Directional detection is a promising search strategy to discover galactic Dark Matter. We present a Bayesian analysis framework dedicated to data from upcoming directional detectors. The interest of directional detection as a powerful tool to set exclusion limits, to authentify a Dark Matter detection or to constrain the Dark Matter properties, both from particle physics and galactic halo physics, will be demonstrated.
Directional detection of dark matter streams  [PDF]
Ciaran A. J. O'Hare,Anne M. Green
Physics , 2014, DOI: 10.1103/PhysRevD.90.123511
Abstract: Directional detection of WIMPs, in which the energies and directions of the recoiling nuclei are measured, currently presents the only prospect for probing the local velocity distribution of Galactic dark matter. We investigate the extent to which future directional detectors would be capable of probing dark matter substructure in the form of streams. We analyse the signal expected from a Sagittarius-like stream and also explore the full parameter space of stream speed, direction, dispersion and density. Using a combination of non-parametric directional statistics, a profile likelihood ratio test and Bayesian parameter inference we find that within acceptable exposure times (O(10) kg yr for cross sections just below the current exclusion limits) future directional detectors will be sensitive to a wide range of stream velocities and densities. We also examine and discuss the importance of the energy window of the detector.
Identification of Dark Matter with directional detection  [PDF]
J. Billard,F. Mayet,D. Santos
Physics , 2010,
Abstract: Directional detection is a promising search strategy to discover galactic Dark Matter. Taking advantage on the rotation of the Solar system around the Galactic center through the Dark Matter halo, it allows to show a direction dependence of WIMP events. Data of directional detectors are composed of energy and a 3D track for each recoiling nuclei. Here, we present a Bayesian analysis method dedicated to data from upcoming directional detectors. However, we focus only on the angular part of the event distribution, arguing that the energy part of the background distribution is unknown. Two different cases are considered: a positive or a null detection of Dark Matter. In the first scenario, we will present a map-based likelihood method allowing to recover the main incoming direction of the signal and its significance, thus proving its Galactic origin. In the second scenario, a new statistical method is proposed. It is based on an extended likelihood in order to set robust and competitive exclusion limits. This method has been compared to two other methods and has been shown to be optimal in any detector configurations. Eventually, prospects for the MIMAC project are presented in the case of a 10 kg CF4 detector with an exposition time of 3 years.
Towards graphene-based detectors for dark matter directional detection  [PDF]
Shang-Yung Wang
Physics , 2015,
Abstract: Dark matter detectors with directional sensitivity have the capability to distinguish dark matter induced nuclear recoils from isotropic backgrounds, thus providing a smoking gun signature for dark matter in the Galactic halo. Here we propose a conceptually novel class of high directional sensitivity dark matter detectors utilizing graphene-based van der Waals heterostructures. The advantages over conventional low pressure gas time projection chamber-based directional detectors are discussed in detail. A practical implementation using graphene/hexagonal boron nitride and graphene/molybdenum disulfide heterostructures is presented together with an overwhelming amount of experimental evidence in strong support of its feasibility.
Directional Detection of Dark Matter with MIMAC  [PDF]
J. Billard,F. Mayet,D. Santos
Physics , 2011, DOI: 10.1088/1742-6596/375/1/012008
Abstract: Directional detection is a promising search strategy to discover galactic Dark Matter. We present a Bayesian analysis framework dedicated to Dark Matter phenomenology using directional detection. The interest of directional detection as a powerful tool to set exclusion limits, to authentify a Dark Matter detection or to constrain the Dark Matter properties, both from particle physics and galactic halo physics, will be demonstrated. However, such results need highly accurate track reconstruction which should be reachable by the MIMAC detector using a dedicated readout combined with a likelihood analysis of recoiling nuclei.
Probing the Local Velocity Distribution of WIMP Dark Matter with Directional Detectors  [PDF]
Samuel K. Lee,Annika H. G. Peter
Physics , 2012, DOI: 10.1088/1475-7516/2012/04/029
Abstract: We explore the ability of directional nuclear-recoil detectors to constrain the local velocity distribution of weakly interacting massive particle (WIMP) dark matter by performing Bayesian parameter estimation on simulated recoil-event data sets. We discuss in detail how directional information, when combined with measurements of the recoil-energy spectrum, helps break degeneracies in the velocity-distribution parameters. We also consider the possibility that velocity structures such as cold tidal streams or a dark disk may also be present in addition to the Galactic halo. Assuming a carbon-tetrafluoride detector with a 30-kg-yr exposure, a 50-GeV WIMP mass, and a WIMP-nucleon spin-dependent cross-section of 0.001 pb, we show that the properties of a cold tidal stream may be well constrained. However, measurement of the parameters of a dark-disk component with a low lag speed of ~50 km/s may be challenging unless energy thresholds are improved.
Directional Dependence and Diurnal Modulation in Dark Matter Detectors  [PDF]
Richard J. Creswick,Shmuel Nussinov,Frank T. Avignone III
Physics , 2010, DOI: 10.1016/j.astropartphys.2011.05.005
Abstract: In this paper we study the effect of the channeling of ions recoiling from collisions with weakly interacting massive particles (WIMPs) in single crystal detectors. In particular we investigate the possibility that channeling may give rise to diurnal modulations of the counting rate as the Earth rotates relative to the direction of the WIMP wind, and the effect that channeling has on the "quenching factor" of a detector.
Three-dimensional track reconstruction for directional Dark Matter detection  [PDF]
J. Billard,F. Mayet,D. Santos
Physics , 2012, DOI: 10.1088/1475-7516/2012/04/006
Abstract: Directional detection of Dark Matter is a promising search strategy. However, to perform such detection, a given set of parameters has to be retrieved from the recoiling tracks : direction, sense and position in the detector volume. In order to optimize the track reconstruction and to fully exploit the data of forthcoming directional detectors, we present a likelihood method dedicated to 3D track reconstruction. This new analysis method is applied to the MIMAC detector. It requires a full simulation of track measurements in order to compare real tracks to simulated ones. We conclude that a good spatial resolution can be achieved, i.e. sub-mm in the anode plane and cm along the drift axis. This opens the possibility to perform a fiducialization of directional detectors. The angular resolution is shown to range between 20$^\circ$ to 80$^\circ$, depending on the recoil energy, which is however enough to achieve a high significance discovery of Dark Matter. On the contrary, we show that sense recognition capability of directional detectors depends strongly on the recoil energy and the drift distance, with small efficiency values (50%-70%). We suggest not to consider this information either for exclusion or discovery of Dark Matter for recoils below 100 keV and then to focus on axial directional data.
In situ measurement of the electron drift velocity for upcoming directional Dark Matter detectors  [PDF]
J. Billard,F. Mayet,G. Bosson,O. Bourrion,O. Guillaudin,J. Lamblin,J. P. Richer,Q. Riffard,D. Santos,F. J. Iguaz,L. Lebreton,D. Maire
Physics , 2013, DOI: 10.1088/1748-0221/9/01/P01013
Abstract: Three-dimensional track reconstruction is a key issue for directional Dark Matter detection and it requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence needed as it is a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures: CF4 and CF4 + CHF3. The latter has been chosen for the MIMAC detector as we expect that adding CHF3 to pure CF4 will lower the electron drift velocity. This is a key point for directional Dark Matter as the track sampling along the drift field will be improved while keeping almost the same Fluorine content of the gas mixture. We show that the drift velocity at 50 mbar is reduced by a factor of about 5 when adding 30% of CHF3.
Measurement of the electron drift velocity for directional dark matter detectors  [PDF]
F. Mayet,J. Billard,G. Bosson,O. Bourrion,O. Guillaudin,J. Lamblin,J. P. Richer,Q. Riffard,D. Santos,F. J. Iguaz,L. Lebreton,D. Maire
Physics , 2014, DOI: 10.1088/1742-6596/469/1/012006
Abstract: Three-dimensional track reconstruction is a key issue for directional Dark Matter detection. It requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures : $\rm CF_4$ and $\rm CF_4+CHF_3$. We also show that adding $\rm CHF_3$ allows us to lower the electron drift velocity while keeping almost the same Fluorine content of the gas mixture.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.