oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Funneling with the Two-Beam RFQ  [PDF]
H. Zimmermann
Physics , 2000,
Abstract: New high current accelerator facilities like proposed for HIDIF or ESS require a beam with a high brilliance. These beams can not be produced by a single pass rf-linac. The increase in brightness in such a driver linac is done by several funneling stages at low energies, in which two identically bunched ion beams are combined into a single beam with twice the frequency current and brightness. Our Two-Beam-RFQ funneling experiment is a setup of two ion sources, a two beam RFQ, a funnel deflector and beam diagnostic equipment to demonstrate funneling of ion beams as a model for the first funneling stage of a HIIF driver. The progress of the funneling experiment and results of simulations will be presented.
Beam Dynamics Design and Electromagnetic Analysis of 3 MeV RFQ for TAC Proton Linac  [PDF]
H. F. Kisoglu,A. Caliskan,M. Yilmaz
Physics , 2014, DOI: 10.13538/j.1001-8042/nst.26.030103
Abstract: A beam dynamics design of 352.2 MHz Radio-Frequency Quadrupole (RFQ) of Turkish Accelerator Center (TAC) project which accelerates continuous wave (CW) proton beam with 30 mA current from 50 keV to 3 MeV kinetic energy has been performed in this study. Also, it includes error analysis of the RFQ in which some fluctuations have been introduced to input beam parameters to see how the output beam parameters are affected, two-dimensional (2-D) and three-dimensional (3-D) electromagnetic structural design of the RFQ to obtain optimum cavity paramaters that agree with the ones of the beam dynamics. The beam dynamics and error analysis of the RFQ have been done by using LIDOS.RFQ. Electromagnetic design parameters have been obtained by using SUPERFISH for 2-D cavity geometry and CST Microwave Studio for 3-D cavity geometry.
Determining phase-space properties of the IHEP RFQ output beam using the RMS beam widths from wire-scanners  [PDF]
Jun Peng,Tao Huang,Hua-Chang Liu,Hong-Ping Jiang,Peng Li,Fang Li,Jian Li,Mei-Fei Liu,Zhen-Cheng Mu,Cai Meng,Ming Meng,Hua-Fu Ouyang,Lin-Yan Rong,Jian-Min Tian,Biao Wang,Bo Wang,Tao-Guang Xu,Xin-An Xu,Yuan Yao,Wen-Qu Xin,Fu-Xiang Zhao,Lei Zeng,Wen-Zhong Zhou
Physics , 2015,
Abstract: A beam line is built after the IHEP RFQ for halo study. To determine transverse emittance and ellipse parameters of the RFQ output beam, beam size data obtained from the first two of 14 wire scanners are employed. By using the transfer matrix method and the least square method, a set of linear equations were set up and solved. The solutions were then applied as initial beam parameters in multi-particle simulations to check the method of calculation. It is shown that difference between the simulated RMS beam size and the measured one at the measurement location is less than 7%, which is acceptable in our experiments.
Beam Dynamics and Electromagnetic Design Studies of 3 MeV RFQ for SNS Programme  [PDF]
Rahul Gaur, Purushottam Shrivastava
Journal of Electromagnetic Analysis and Applications (JEMAA) , 2010, DOI: 10.4236/jemaa.2010.29068
Abstract: The physics design of a 3 MeV, 30 mA, 352.2 MHz Radio Frequency Quadrupole (RFQ) is done for the future Indian Spallation Neutron Source (ISNS) project at RRCAT, India. The beam dynamics design of RFQ and the error analysis of the input beam parameters are done by using standard beam dynamics code PARMTEQM. The electromagnetic stu-dies for the two-dimensional and three-dimensional cavity design are performed using computer codes SUPERFISH and CST Microwave Studio. The physics design of RFQ consisting of the beam dynamics design near the beam axis and the electromagnetic design for the RFQ resonator is described here.
New Tasks and New Codes for RFQ Beam Simulation  [PDF]
Boris Bondarev,Alexander Durkin,Stanislav Vinogradov,Igor Shumakov
Physics , 2000,
Abstract: Proton linear accelerator is the base Accelerator Driven Power System (ADS). Such ADS are dedicated to various purposes: weapon plutonium conversion, "energy amplifier", transmutation of radionuclear wastes etc. Solution of these tasks requires proton beams with energy 1 GeV and average current up to 30 mA. At the moment there are no problems of fundamental nature in such linac construction. The main problems have economic and technical aspects. Problems of CW linac will be demonstrated on the base beam dynamics requirements. New code package LIDOS.RFQ.Designer makes possible to simulate beam dynamics in RF fields of real vane shape (including gaps between RFQ section) as well as to determine channel parameters tolerances for reliable operation
Particle-In-Cell Simulation of RFQ in SSC - Linac  [PDF]
Xiao Chen,He Yuan,Yuan You-Jin,Liu Yong,Xia Jia-Wen,Lu Yuan-Rong,Yuri Batygin
Physics , 2010,
Abstract: A 52MHz Radio Frequency Quadrupole (RFQ) linear accelerator (linac) is designed to serve as an initial structure for the SSC-linac system (injector into Separated Sector Cyclotron). The designed injection and output energy are 3.5 keV/u and 143 keV/u, respectively. Beam dynamics study in RFQ was done using 3-dimensional particle-in-cell code BEAMPATH [1]. Simulation results show that this RFQ structure is characterized by stable value of beam transmission efficiency (at least 95%) for both zero-current mode and for space charge dominated regime. The beam accelerated in RFQ has good quality in both transversal and longitudinal directions, and could be easily accepted by Drift Tube Linac (DTL). Effects of vane errors and of the space charge on beam parameters are studied as well to define the engineering tolerance for RFQ vane machining and alignment.
Beam optimization of RFQ and SFRFQ combined accelerator at Peking University  [PDF]
Minglei Kang,Yuanrong Lu,Zhi Wang,Kun Zhu,Xueqing Yan,Shuli Gao,Shixiang Peng,Zhiyu Guo,Jiaxun Fang,Jiaer Chen
Physics , 2010,
Abstract: The Peking University Integral Split Ring Radio Frequency Quadrupole(ISR RFQ) accelerator was constructed in 1999 with a high duty factor 16.7% and repetition frequency 166Hz, and it was able to accelerate N+, O+,O-, C+ and He+ from 1.6kev/u to 65keV/u. It was later upgraded as an injector of the Separated Function RFQ (SFRFQ). The experiments indicated that the maximum accelerated O+ beam current could exceed 3.2mA with energy 1.03MeV and an energy spread (FWHM) 3.1%. Then the beam transports through a 1m-long magnetic triplet to the entrance of SFRFQ and is finally accelerated to 1.64MeV. The beam conditioning of RFQ were carefully optimized to satisfy the requirements of the SFRFQ. The combined accelerator eventually can deliver 0.53mA O+ beam with energy 1.65MeV, which has sufficiently demonstrated the feasibility of the SFRFQ structure.
Status of the SPP RFQ project  [PDF]
G. Turemen,B. Yasatekin,H. Yildiz,A. Alacakir,G. Unel
Physics , 2014,
Abstract: The SPP project at TAEK will use a 352.2 MHz 4-vane Radio Frequency Quadrupole (RFQ) to accelerate H+ ions from 20 keV to 1.5 MeV. With the design already complete, the project is at the test production phase. To this effect, a so called "cold model" of 50 cm length has been produced to validate the design approach, to perform the low power RF tests and to evaluate possible production errors. This study will report on the current status of the low energy beam transport line (LEBT) and RFQ cavity of the SPP project. It will also discuss the design and manufacturing of the RF power supply and its transmission line. In addition, the test results from some of the LEBT components will be shown and the final RFQ design will be shared.
Determining Phase-Space Properties of the LEDA RFQ Output Beam  [PDF]
W. P. Lysenko,J. D. Gilpatrick,L. J. Rybarcyk,J. D. Schneider,H. V. Smith Jr,L. M. Young,M. E. Schulze
Physics , 2000,
Abstract: Quadrupole scans were used to characterize the LEDA RFQ beam. Experimental data were fit to computer simulation models for the rms beam size. The codes were found to be inadequate in accurately reproducing details of the wire scanner data. When this discrepancy is resolved, we plan to fit using all the data in wire scanner profiles, not just the rms values, using a 3-D nonlinear code.
Design and Optimization of Low Energy Beam Transport for TAC Proton Facility  [PDF]
H. F. Kisoglu,A. Caliskan,S. Sultansoy,M. Yilmaz
Physics , 2014,
Abstract: In this study, a low energy beam transport (LEBT) channel for the proton linac section of the Turkish Accelerator Center (TAC) has been designed by using TRAVEL code. Commonly used LEBT including two focusing solenoid magnets will transport and match the H- beam from a volume source to RFQ. In the beam dynamics simulations of such a LEBT line, 95% space-charge compensation (SCC) has been considered in this study. We aimed to find out the determination of our RFQ input parameters that gives the best possible beam quality at the entrance of the RFQ using beam collimator in the LEBT line as an alternative way. In this way, we have acquired the best possible beam quality on RFQ input plane as well as optimizing the LEBT line.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.