Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Gaia Detection Capabilities of Spectroscopic Brown Dwarf Binaries  [PDF]
V. Joergens,S. Reffert
Physics , 2014,
Abstract: The astrometric space mission Gaia is expected to detect a large number of brown dwarf binary systems with close orbits and determine astrometric orbit solutions. This will provide key information for the formation and evolution of brown dwarfs, such as the binary frequency and dynamical masses. Known brown dwarf binaries with orbit constraints from other techniques will play an important role. We are carrying out one of the most precise and long-lasting radial velocity surveys for brown dwarf binaries in the Cha I star-forming region at the VLT. We were able to add two orbit determinations to the small group of a handful of brown dwarf and very low-mass binaries with characterized RV orbits. We show here that the astrometric motion of both systems can be detected with Gaia. We predict an astrometric signal of about 1.2 - 1.6 milliarcseconds (mas) for the brown dwarf binary ChaHa8 and of 0.4 - 0.8 mas for the very low-mass binary CHXR74. We take the luminosity of the companion into account for these estimates and present a relation for the astrometric signature of a companion with non-negligible luminosity.
Statistical Properties of Brown Dwarf Companions: Implications for Different Formation Mechanisms  [PDF]
Bo Ma,Jian Ge
Physics , 2013, DOI: 10.1093/mnras/stu134
Abstract: The mass domain where massive extrasolar planets and brown dwarfs overlap is still poorly understood due to the paucity of brown dwarfs orbiting close to solar-type stars, the so-called brown dwarf desert. In this paper we collect all of available data about close brown dwarfs around solar type stars and their host stars from literature and study the demographics of the brown dwarf desert. The data clearly show a short period and a medium mass gap in the brown dwarf period-mass distribution diagram ($ 35
Astrometry of brown dwarfs with Gaia  [PDF]
J. H. J. de Bruijne
Physics , 2014,
Abstract: Europe's Gaia spacecraft will soon embark on its five-year mission to measure the absolute parallaxes of the complete sample of 1,000 million objects down to 20 mag. It is expected that thousands of nearby brown dwarfs will have their astrometry determined with sub-milli-arcsecond standard errors. Although this level of accuracy is comparable to the standard errors of the relative parallaxes that are now routinely obtained from the ground for selected, individual objects, the absolute nature of Gaia's astrometry, combined with the sample increase from one hundred to several thousand sub-stellar objects with known distances, ensures the uniqueness of Gaia's legacy in brown-dwarf science for the coming decade(s). We shortly explore the gain in brown-dwarf science that could be achieved by lowering Gaia's faint-end limit from 20 to 21 mag and conclude that two spectral-type sub-classes could be gained in combination with a fourfold increase in the solar-neighbourhood-volume sampled by Gaia and hence in the number of brown dwarfs in the Gaia Catalogue.
Gaia and brown dwarfs from Spain  [PDF]
J. A. Caballero
Physics , 2014,
Abstract: Gaia will not observe 50000 brown dwarfs, but about 100 times less. However, these <~ 500 brown dwarfs will be benchmarks for many substellar topics. It is possible to identify them in advance and make the list public to all astronomers worldwide through a virtual observatory-compliant "Gaia brown dwarf" catalogue. This M-, L- and T-dwarf Archive of Interest for Astrophysics would tabulate precise Gaia astrometry, multiband photometry, high- and low-resolution spectroscopy and homogeneously derived astrophysical parameters. Spanish observatories may play a key role in the catalogue preparation.
Microlensing, Brown Dwarfs and GAIA  [PDF]
N. W. Evans
Physics , 2014,
Abstract: The GAIA satellite can precisely measure the masses of nearby brown dwarfs and lower main sequence stars by the microlensing effect. The scientific yield is maximised if the microlensing event is also followed with ground-based telescopes to provide densely sampled photometry. There are two possible strategies. First, ongoing events can be triggered by photometric or astrometric alerts by GAIA. Second, events can be predicted using known high proper motion stars as lenses. This is much easier, as the location and time of an event can be forecast. Using the GAIA source density, we estimate that the sample size of high proper motion ($>300$ mas yr$^{-1}$) brown dwarfs needed to provide predictable events during the 5 year mission lifetime is surprisingly small, only of the order of a hundred. This is comparable to the number of high proper motion brown dwarfs already known from the work of the UKIDSS Large Area Survey and the all-sky WISE satellite. Provided the relative parallax of the lens and the angular Einstein radius can be recovered from astrometric data, then the mass of the lens can be found. Microlensing provides the only way of measuring the masses of individual objects irrespective oftheir luminosity. So, microlensing with GAIA is the best way to carry out an inventory of masses in the brown dwarf regime.
Brown Dwarf Jets: Investigating the Universality of Jet Launching Mechanisms at the Lowest Masses  [PDF]
Emma Teresa Whelan,Francesca Bacciotti,Tom Ray,Catherine Dougados
Physics , 2010, DOI: 10.1017/S1743921310016467
Abstract: Recently it has become apparent that proto-stellar-like outflow activity extends to the brown dwarf (BD) mass regime. While the presence of accretion appears to be the common ingredient in all objects known to drive jets fundamental questions remain unanswered. The more prominent being the exact mechanism by which jets are launched, and whether this mechanism remains universal among such a diversity of sources and scales. To address these questions we have been investigating outflow activity in a sample of protostellar objects that differ considerably in mass and mass accretion rate. Central to this is our study of brown dwarf jets. To date Classical T Tauri stars (CTTS) have offered us the best touchstone for decoding the launching mechanism. Here we shall summarise what is understood so far of BD jets and the important constraints observations can place on models. We will focus on the comparison between jets driven by objects with central mass < 0.1M \odot and those driven by CTTSs. In particular we wish to understand how the the ratio of the mass outflow to accretion rate compares to what has been measured for CTTSs.
White dwarf research with Gaia  [PDF]
Stefan Jordan
Physics , 2014,
Abstract: The results of the Gaia mission will have tremendous influence on many topics in white dwarf research. In this paper the current status of the Gaia mission is described. At the end a short outlook on the release scenario and the expected accuracy of the Gaia data is provided.
Gaia, Non-Single Stars, Brown Dwarfs, and Exoplanets  [PDF]
A. Sozzetti
Physics , 2014,
Abstract: In its all-sky survey, Gaia will monitor astrometrically and photometrically millions of main-sequence stars with sufficient sensitivity to brown dwarf companions within a few AUs from their host stars and to transiting brown dwarfs on very short periods, respectively. Furthermore, thousands of detected ultra-cool dwarfs in the backyard of the Sun will have direct (absolute) distance estimates from Gaia, and for these Gaia astrometry will be of sufficient precision to reveal any orbiting companions with masses as low as that of Jupiter. Gaia observations thus bear the potential for critical contributions to many important questions in brown dwarfs astrophysics (how do they form in isolation and as companions to stars? Can planets form around them? What are their fundamental parameters such as ages, masses, and radii? What is their atmospheric physics?), and their connection to stars and planets. The full legacy potential of Gaia in the realm of brown dwarf science will be realized when combined with other detection and characterization programs, both from the ground and in space.
Structure and evolution of the first CoRoT exoplanets: Probing the Brown Dwarf/Planet overlapping mass regime  [PDF]
J. Leconte,I. Baraffe,G. Chabrier,T. Barman,B. Levrard
Physics , 2009, DOI: 10.1051/0004-6361/200911896
Abstract: We present detailed structure and evolution calculations for the first transiting extrasolar planets discovered by the space-based CoRoT mission. Comparisons between theoretical and observed radii provide information on the internal composition of the CoRoT objects. We distinguish three different categories of planets emerging from these discoveries and from previous ground-based surveys: (i) planets explained by standard planetary models including irradiation, (ii) abnormally bloated planets and (iii) massive objects belonging to the overlapping mass regime between planets and brown dwarfs. For the second category, we show that tidal heating can explain the relevant CoRoT objects, providing non-zero eccentricities. We stress that the usual assumption of a quick circularization of the orbit by tides, as usually done in transit light curve analysis, is not justified a priori, as suggested recently by Levrard et al. (2009), and that eccentricity analysis should be carefully redone for some observations. Finally, special attention is devoted to CoRoT-3b and to the identification of its very nature: giant planet or brown dwarf ? The radius determination of this object confirms the theoretical mass-radius predictions for gaseous bodies in the substellar regime but, given the present observational uncertainties, does not allow an unambiguous identification of its very nature. This opens the avenue, however, to an observational identification of these two distinct astrophysical populations, brown dwarfs and giant planets, in their overlapping mass range, as done for the case of the 8 Jupiter-mass object Hat-P-2b. (abridged)
Giant planet and brown dwarf formation  [PDF]
G. Chabrier,A. Johansen,M. Janson,R. Rafikov
Physics , 2014, DOI: 10.2458/azu_uapress_9780816531240-ch027
Abstract: Understanding the dominant brown dwarf and giant planet formation processes, and finding out whether these processes rely on completely different mechanisms or share common channels represents one of the major challenges of astronomy and remains the subject of heated debates. It is the aim of this review to summarize the latest developments in this field and to address the issue of origin by confronting different brown dwarf and giant planet formation scenarios to presently available observational constraints. As examined in the review, if objects are classified as "Brown Dwarfs" or "Giant Planets" on the basis of their formation mechanism, it has now become clear that their mass domains overlap and that there is no mass limit between these two distinct populations. Furthermore, while there is increasing observational evidence for the existence of non-deuterium burning brown dwarfs, some giant planets, characterized by a significantly metal enriched composition, might be massive enough to ignite deuterium burning in their core. Deuterium burning (or lack of) thus plays no role in either brown dwarf or giant planet formation. Consequently, we argue that the IAU definition to distinguish these two populations has no physical justification and brings scientific confusion. In contrast, brown dwarfs and giant planets might bear some imprints of their formation mechanism, notably in their mean density and in the physical properties of their atmosphere. Future direct imaging surveys will undoubtedly provide crucial information and perhaps provide some clear observational diagnostics to unambiguously distinguish these different astrophysical objects.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.