Abstract:
Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected BA scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet AS-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

Abstract:
We define a minimal model of traffic flows in complex networks containing the most relevant features of real routing schemes, i.e. a trade--off strategy between topological-based and traffic-based routing. The resulting collective behavior, obtained analytically for the ensemble of uncorrelated networks, is physically very rich and reproduces results recently observed in traffic simulations on scale-free networks. We find that traffic control is useless in homogeneous graphs but may improves global performance in inhomogeneous networks, enlarging the free-flow region in parameter space. Traffic control also introduces non-linear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner.

Abstract:
We present a study of transport on complex networks with routing based on local information. Particles hop from one node of the network to another according to a set of routing rules with different degrees of congestion awareness, ranging from random diffusion to rigid congestion-gradient driven flow. Each node can be either source or destination for particles and all nodes have the same routing capacity, which are features of ad-hoc wireless networks. It is shown that the transport capacity increases when a small amount of congestion awareness is present in the routing rules, and that it then decreases as the routing rules become too rigid when the flow becomes strictly congestion-gradient driven. Therefore, an optimum value of the congestion awareness exists in the routing rules. It is also shown that, in the limit of a large number of nodes, networks using routing based on local information jam at any nonzero load. Finally, we study the correlation between congestion at node level and a betweenness centrality measure.

Abstract:
We study trade-offs presented by local search algorithms in complex networks which are heterogeneous in edge weights and node degree. We show that search based on a network measure, local betweenness centrality (LBC), utilizes the heterogeneity of both node degrees and edge weights to perform the best in scale-free weighted networks. The search based on LBC is universal and performs well in a large class of complex networks.

Abstract:
The problem of searchability in decentralized complex networks is of great importance in computer science, economy and sociology. We present a formalism that is able to cope simultaneously with the problem of search and the congestion effects that arise when parallel searches are performed, and obtain expressions for the average search cost--written in terms of the search algorithm and the topological properties of the network--both in presence and abscence of congestion. This formalism is used to obtain optimal network structures for a system using a local search algorithm. It is found that only two classes of networks can be optimal: star-like configurations, when the number of parallel searches is small, and homogeneous-isotropic configurations, when the number of parallel searches is large.

Abstract:
We analyze analytically the effect of congestion costs within a physically relevant, yet exactly solvable network model featuring central hubs. These costs lead to a competition between centralized and decentralized transport pathways. In stark contrast to conventional no-cost networks, there now exists an optimal number of connections to the central hub in order to minimize the shortest path. Our results shed light on an open problem in biology, informatics and sociology, concerning the extent to which decentralized versus centralized design benefits real-world complex networks.

Abstract:
We study a minimal model of traffic flows in complex networks, simple enough to get analytical results, but with a very rich phenomenology, presenting continuous, discontinuous as well as hybrid phase transitions between a free-flow phase and a congested phase, critical points and different scaling behaviors in the system size. It consists of random walkers on a queueing network with one-range repulsion, where particles can be destroyed only if they can move. We focus on the dependence on the topology as well as on the level of traffic control. We are able to obtain transition curves and phase diagrams at analytical level for the ensemble of uncorrelated networks and numerically for single instances. We find that traffic control improves global performance, enlarging the free-flow region in parameter space only in heterogeneous networks. Traffic control introduces non-linear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner. The model also reproduces the cross-over in the scaling of traffic fluctuations empirically observed in the Internet, and moreover, a conserved version can reproduce qualitatively some stylized facts of traffic in transportation networks.

Abstract:
The central points of communication network flow has often been identified using graph theoretical centrality measures. In real networks, the state of traffic density arises from an interplay between the dynamics of the flow and the underlying network structure. In this work we investigate the relationship between centrality measures and the density of traffic for some simple particle hopping models on networks with emerging scale-free degree distributions. We also study how the speed of the dynamics are affected by the underlying network structure. Among other conclusions, we find that, even at low traffic densities, the dynamical measure of traffic density (the occupation ratio) has a non-trivial dependence on the static centrality (quantified by "betweenness centrality"), which non-central vertices getting a comparatively large portion of the traffic.

Abstract:
Complex networks are ubiquitous in nature and play a role of paramount importance in many contexts. Internet and the cyberworld, which permeate our everyday life, are self-organized hierarchical graphs. Urban traffic flows on intricate road networks, which impact both transportation design and epidemic control. In the brain, neurons are cabled through heterogeneous connections, which support the propagation of electric signals. In all these cases, the true challenge is to unveil the mechanisms through which specific dynamical features are modulated by the underlying topology of the network. Here, we consider agents randomly hopping along the links of a graph, with the additional possibility of performing long-range hops to randomly chosen disconnected nodes with a given probability. We show that an optimal combination of the two jump rules exists that maximises the efficiency of target search, the optimum reflecting the topology of the network.

Abstract:
We study the congestion phenomenon in a mathematical model of the data packets traffic in transmission networks as a function of the topology and of the load of the network. Two types of traffic are considered: homogeneous and heterogeneous traffic. The congestion phenomenon is studied in stationary conditions through the behaviour of two quantities: the mean travel time of a packet and the mean number of packets that have not reached their destination and are traveling in the network. We define a transformation that maps a network having the small world property (Inet 3037 in our numerical experiments) into a (modified) lattice network that has the same number of nodes. This map changes the capacity of the branches of the graphs representing the networks and can be regarded as an “interpolation” between the two classes of networks. Using this transformation we compare the behaviour of Inet 3037 to the behaviour of a modified rectangular lattice and we study the behaviour of the interpolating networks. This study suggests how to change the network topology and the branch capacities in order to alleviate the congestion phenomenon. In the website: http://www.ceri.uniroma1.it/ceri/zirilli/w6 some auxiliary material including animations and stereo?graphic scenes that helps the understanding of this paper is shown.