Abstract:
We employ the formalism of bond currents, expressed in terms of the nonequilibrium Green functions, to image the charge flow between two sites of the honeycomb lattice of graphene ribbons of few nanometers width. In sharp contrast to nonrelativistic electrons, current density profiles of quantum transport at energies close to the Dirac point in clean zigzag graphene nanoribbons (ZGNR) differs markedly from the profiles of charge density peaked at the edges due to zero-energy localized edge states. For transport through the lowest propagating mode induced by these edge states, edge vacancies do not affect current density peaked in the center of ZGNR. The long-range potential of a single impurity acts to reduce local current around it while concurrently increasing the current density along the zigzag edge, so that ZGNR conductance remains perfect $G=2e^2/h$.

Abstract:
There are two types of intrinsic surface states in solids. The first type is formed on the surface of topological insulators. Recently, transport of massless Dirac fermions in the band of "topological" states has been demonstrated. States of the second type were predicted by Tamm and Shockley long ago. They do not have a topological background and are therefore strongly dependent on the properties of the surface. We study the problem of the conductivity of Tamm-Shockley edge states through direct transport experiments. Aharonov-Bohm magneto-oscillations of resistance are found on graphene samples that contain a single nanohole. The effect is explained by the conductivity of the massless Dirac fermions in the edge states cycling around the nanohole. The results demonstrate the deep connection between topological and non-topological edge states in 2D systems of massless Dirac fermions.

Abstract:
Due to Klein tunneling, electrostatic potentials are unable to confine Dirac electrons. We show that it is possible to confine massless Dirac fermions in a monolayer graphene sheet by inhomogeneous magnetic fields. This allows one to design mesoscopic structures in graphene by magnetic barriers, e.g. quantum dots or quantum point contacts.

Abstract:
Electronic properties of materials are commonly described by quasiparticles that behave as non-relativistic electrons with a finite mass and obey the Schroedinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective "speed of light" c* ~10^6m/s. Our studies of graphene - a single atomic layer of carbon - have revealed a variety of unusual phenomena characteristic of two-dimensional (2D) Dirac fermions. In particular, we have observed that a) the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; b) graphene's conductivity never falls below a minimum value corresponding to the conductance quantum e^2/h, even when carrier concentrations tend to zero; c) the cyclotron mass m of massless carriers with energy E in graphene is described by equation E =mc*^2; and d) Shubnikov-de Haas oscillations in graphene exhibit a phase shift of pi due to Berry's phase.

Abstract:
Graphene grown on Fe(110)by chemical vapor deposition using propylene is investigated by means of angle-resolved photoemission. The presence of massless Dirac fermions is clearly evidenced by the observation of a fully intact Dirac cone. Unlike Ni(111) and Co(0001), the Fe(110) imposes a strongly anisotropic quasi-one-dimensional structure on the graphene. Certain signatures of a superlattice effect appear in the dispersion of its \sigma-bands but the Dirac cone does not reveal any detectable superlattice or quantum-size effects although the graphene corrugation is twice as large as in the established two-dimensional graphene superlattice on Ir(111).

Abstract:
By solving two-component spinor equation for massless Dirac Fermions, we show that graphene under a periodic external magnetic field exhibits a unique energy spectrum: At low energies, Dirac Fermions are localized inside the magnetic region with discrete Landau energy levels, while at higher energies, Dirac Fermions are mainly found in non-magnetic regions with continuous energy bands originating from wavefunctions analogous to particle-in-box states of electrons. These findings offer a new methodology for the control and tuning of massless Dirac Fermions in graphene.

Abstract:
We show that new massless Dirac fermions are generated when a slowly varying periodic potential is applied to graphene. These quasiparticles, generated near the supercell Brillouin zone boundaries with anisotropic group velocity, are different from the original massless Dirac fermions. The quasiparticle wavevector (measured from the new Dirac point), the generalized pseudospin vector, and the group velocity are not collinear. We further show that with an appropriate periodic potential of triangular symmetry, there exists an energy window over which the only available states are these quasiparticles, thus, providing a good system to probe experimentally the new massless Dirac fermions. The required parameters of external potentials are within the realm of laboratory conditions.

Abstract:
Using the Lewis-Riesenfeld method of invariants we construct explicit analytical solutions for the massless Dirac equation in 2+1 dimensions describing quasi-particles in graphene. The Hamiltonian of the system considered contains some explicit time-dependence in addition to one resulting from being minimally coupled to a time-dependent magnetic field. The eigenvalue equations for the two spinor components of the Lewis-Riesenfeld invariant are found to decouple into a pair of supersymmetric invariants in a similar fashion as the known decoupling for the time-independent Dirac Hamiltonians.

Abstract:
Charge carriers of graphene show neutrino-like linear energy dispersions as well as chiral behavior near the Dirac point. Here we report highly unusual and unexpected behaviors of these carriers in applied external periodic potentials, i.e., in graphene superlattices. The group velocity renormalizes highly anisotropically even to a degree that it is not changed at all for states with wavevector in one direction but is reduced to zero in another, implying the possibility that one can make nanoscale electronic circuits out of graphene not by cutting it but by drawing on it in a non-destructive way. Also, the type of charge carrier species (e.g. electron, hole or open orbit) and their density of states vary drastically with the Fermi energy, enabling one to tune the Fermi surface-dominant properties significantly with gate voltage. These results address the fundamental question of how chiral massless Dirac fermions propagate in periodic potentials and point to a new possible path for nanoscale electronics.

Abstract:
Graphene and topological insulators (TI) possess two-dimensional Dirac fermions with distinct physical properties. Integrating these two Dirac materials in a single device creates interesting opportunities for exploring new physics of interacting massless Dirac fermions. Here we report on a practical route to experimental fabrication of graphene-Sb2Te3 heterostructure. The graphene-TI heterostructures are prepared by using a dry transfer of chemical-vapor-deposition grown graphene film. ARPES measurements confirm the coexistence of topological surface states of Sb2Te3 and Dirac {\pi} bands of graphene, and identify the twist angle in the graphene-TI heterostructure. The results suggest a potential tunable electronic platform in which two different Dirac low-energy states dominate the transport behavior.