Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
On Turbulent Reconnection  [PDF]
Eun-Jin Kim,P. H. Diamond
Physics , 2001, DOI: 10.1086/321628
Abstract: We examine the dynamics of turbulent reconnection in 2D and 3D reduced MHD by calculating the effective dissipation due to coupling between small-scale fluctuations and large-scale magnetic fields. Sweet-Parker type balance relations are then used to calculate the global reconnection rate. Two approaches are employed -- quasi-linear closure and an eddy-damped fluid model. Results indicate that despite the presence of turbulence, the reconnection rate remains inversely proportional to $\sqrt{R_m}$, as in the Sweet-Parker analysis. In 2D, the global reconnection rate is shown to be enhanced over the Sweet-Parker result by a factor of magnetic Mach number. These results are the consequences of the constraint imposed on the global reconnection rate by the requirement of mean square magnetic potential balance. The incompatibility of turbulent fluid-magnetic energy equipartition and stationarity of mean square magnetic potential is demonstrated.
Fast Reconnection and Reconnection Diffusion: Implications for Star Formation  [PDF]
A. Lazarian
Physics , 2011,
Abstract: Fast reconnection of magnetic field in turbulent fluids allows magnetic field to change its topology and connections. As a result, the traditional concept of magnetic fields being frozen into the plasma is no longer applicable. The diffusion of plasmas and magnetic field is enabled by reconnection and therefore is termed "reconnection diffusion". We explore the consequences of reconnection diffusion for star formation. In the paper we explain the physics of reconnection diffusion both from macroscopic and microscopic points of view. We quantify the reconnection diffusion rate both for weak and strong MHD turbulence and address the problem of reconnection diffusion acting together with ambipolar diffusion. In addition, we provide a criterion for correctly representing the magnetic diffusivity in simulations of star formation. We show that the role of the plasma effects is limited to "breaking up lines" on small scales and does not affect the rate of reconnection diffusion. We address the existing observational results and demonstrate how reconnection diffusion can explain the puzzles presented by observations, in particular, the observed higher magnetization of cloud cores in comparison with the magnetization of envelopes. We also outline a possible set of observational tests of the reconnection diffusion concept and discuss how the application of the new concept changes our understanding of star formation and its numerical modeling. Finally, we outline the differences of the process of reconnection diffusion and the process of accumulation of matter along magnetic field lines that is frequently invoked to explain the results of numerical simulations
Explosive Turbulent Magnetic Reconnection  [PDF]
Katsuaki Higashimori,Nobumitsu Yokoi,Masahiro Hoshino
Physics , 2013, DOI: 10.1103/PhysRevLett.110.255001
Abstract: We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.
Turbulent Reconnection in Relativistic Plasmas And Effects of Compressibility  [PDF]
Makoto Takamoto,Tsuyoshi Inoue,Alexandre Lazarian
Physics , 2015, DOI: 10.1088/0004-637X/815/1/16
Abstract: We report turbulence effects on magnetic reconnection in relativistic plasmas using 3-dimensional relativistic resistive magnetohydrodynamics simulations. We found reconnection rate became independent of the plasma resistivity due to turbulence effects similarly to non-relativistic cases. We also found compressible turbulence effects modified the turbulent reconnection rate predicted in non-relativistic incompressible plasmas; The reconnection rate saturates and even decays as the injected velocity approaches to the Alfv\'en velocity. Our results indicate the compressibility cannot be neglected when compressible component becomes about half of incompressible mode occurring when the Alfv\'en Mach number reaches about $0.3$. The obtained maximum reconnection rate is around $0.05$ to $0.1$, which will be able to reach around $0.1$ to $0.2$ if injection scales are comparable to the sheet length.
Reconnection in turbulent astrophysical fluids  [PDF]
A. Lazarian,G. Eyink,E. Vishniac,G. Kowal
Physics , 2014,
Abstract: Magnetic reconnection is a fundamental process of magnetic field topology change. We analyze the connection of this process with turbulence which is ubiquitous in astrophysical environments. We show how Lazarian & Vishniac (1999) model of turbulent reconnection is connected to the experimentally proven concept of Richardson diffusion and discuss how turbulence violates the generally accepted notion of magnetic flux freezing. We note that in environments that are laminar initially turbulence can develop as a result of magnetic reconnection and this can result in flares of magnetic reconnection in magnetically dominated media. In particular, magnetic reconnection can initially develop through tearing, but the transition to the turbulent state is expected for astrophysical systems. We show that turbulent reconnection predictions corresponds to the Solar and solar wind data.
Turbulent Reconnection and Its Implications  [PDF]
Alex Lazarian,Gregory L. Eyink,Ethan T. Vishniac,Grzegorz Kowal
Physics , 2015, DOI: 10.1098/rsta.2014.0144
Abstract: Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes in magnetized plasmas. In most astrophysical environments the Reynolds numbers are large and therefore the transition to turbulence is inevitable. This turbulence must be taken into account for any theory of magnetic reconnection, since the initially laminar configurations can transit to the turbulence state, what is demonstrated by 3D high resolution numerical simulations. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (1999) reconnection model and present numerical evidence supporting the model and demonstrate that it is closely connected to the concept of Richardson diffusion and compatible with the Lagrangian dynamics of magnetized fluids. We point out that the Generalized Ohm's Law, that accounts for turbulent motion, predicts the subdominance of the microphysical plasma effects for a realistically turbulent media. We show that on of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a corner stone of most theories dealing with magnetized plasmas and therefore its change induces fundamental shifts in accepted paradigms like turbulent reconnection entailing the diffusion process that is essential for understanding star formation. We argue, that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares predicted by turbulent reconnection and relate them to solar flares and gamma ray bursts. We analyze solar observations, measurements in the solar wind or heliospheric current sheet, and show their correspondence with turbulent reconnection predictions. Finally, we discuss 1st Order Fermi acceleration as a natural consequence of the turbulent reconnection.
Reconnection current sheet structure in a turbulent medium  [PDF]
E. T. Vishniac,S. Pillsworth,G. Eyink,G. Kowal
Nonlinear Processes in Geophysics (NPG) , 2012, DOI: 10.5194/npg-19-605-2012
Abstract: In the presence of turbulence, magnetic field lines lose their dynamical identity and particles entrained on field lines diffuse through space at a rate determined by the amplitude of the turbulence. In previous work (Lazarian and Vishniac, 1999; Kowal et al., 2009; Eyink et al., 2011) we showed that this leads to reconnection speeds which are independent of resistivity. In particular, in Kowal et al. (2009) we showed that numerical simulations were consistent with the predictions of this model. Here we examine the structure of the current sheet in simulations of turbulent reconnection. Laminar flows consistent with the Sweet-Parker reconnection model produce very thin and well ordered currents sheets. On the other hand, the simulations of Kowal et al. (2009) show a strongly disordered state even for relatively low levels of turbulence. Comparing data cubes with and without reconnection, we find that large scale field reversals are the cumulative effect of many individual eddies, each of which has magnetic properties which are not very different from turbulent eddies in a homogeneous background. This implies that the properties of stationary and homogeneous MHD turbulence are a reasonable guide to understanding turbulence during large scale magnetic reconnection events. In addition, dissipation and high energy particle acceleration during reconnection events take place over a macroscopic volume, rather than being confined to a narrow zone whose properties depend on microscopic transport coefficients.
Interchange reconnection in a turbulent Corona  [PDF]
A. F. Rappazzo,W. H. Matthaeus,D. Ruffolo,S. Servidio,M. Velli
Physics , 2012, DOI: 10.1088/2041-8205/758/1/L14
Abstract: Magnetic reconnection at the interface between coronal holes and loops, so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechanism operates near and around boundaries between open and closed regions inducing a continual stochastic rearrangement of connectivity. We examine a reduced magnetohydrodynamic model of a simplified interface region between open and closed corona threaded by a strong unipolar magnetic field. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along loop-coronal hole boundary regions, and can account naturally and simply for outflows at and adjacent to such boundaries and for the observed diffusion of slow wind around the heliospheric current sheet.
Macroscopic effects of the spectral structure in turbulent flows  [PDF]
Tuan Tran,Pinaki Chakraborty,Nicholas Guttenberg,Alisia Prescott,Hamid Kellay,Walter Goldburg,Nigel Goldenfeld,Gustavo Gioia
Physics , 2009, DOI: 10.1038/nphys1674
Abstract: Two aspects of turbulent flows have been the subject of extensive, split research efforts: macroscopic properties, such as the frictional drag experienced by a flow past a wall, and the turbulent spectrum. The turbulent spectrum may be said to represent the fabric of a turbulent state; in practice it is a power law of exponent \alpha (the "spectral exponent") that gives the revolving velocity of a turbulent fluctuation (or "eddy") of size s as a function of s. The link, if any, between macroscopic properties and the turbulent spectrum remains missing. Might it be found by contrasting the frictional drag in flows with differing types of spectra? Here we perform unprecedented measurements of the frictional drag in soap-film flows, where the spectral exponent \alpha = 3 and compare the results with the frictional drag in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of the Reynolds number Re (a measure of the strength of the turbulence), we find that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may be predicted from the attendant value of \alpha by using a new theory, in which the frictional drag is explicitly linked to the turbulent spectrum. Our work indicates that in turbulence, as in continuous phase transitions, macroscopic properties are governed by the spectral structure of the fluctuations.
Turbulent General Magnetic Reconnection  [PDF]
Gregory L. Eyink
Physics , 2014, DOI: 10.1088/0004-637X/807/2/137
Abstract: Plasma flows with an MHD-like turbulent inertial range, such as the solar wind, require a generalization of General Magnetic Reconnection (GMR) theory. We introduce the slip-velocity source vector, which gives the rate of development of slip velocity per unit arc length of field line. The slip source vector is the ratio of the curl of the non ideal electric field in the Generalized Ohm's Law and the magnetic field strength. It diverges at magnetic nulls, unifying GMR with magnetic null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of the quasi potential (integral of parallel electric field along field lines). In a turbulent inertial range the curl becomes extremely large while the parallel component is tiny, so that line slippage occurs even while ideal MHD becomes accurate. The resolution of this paradox is that ideal MHD is valid for a turbulent inertial-range only in a weak sense which does not imply magnetic line freezing. The notion of weak solution is explained in terms of spatial coarse-graining and renormalization group (RG) theory. We give an argument for the weak validity of the ideal Ohm's law in the inertial range, via rigorous estimates of the terms in the Generalized Ohm's Law for an electron-ion plasma. All of the nonideal terms (from collisional resistivity, Hall field, electron pressure anisotropy, and electron inertia) are shown to be irrelevant in the RG sense and large-scale reconnection is thus governed solely by ideal dynamics. We briefly discuss some implications for heliospheric reconnection, in particular for deviations from the Parker spiral model of interplanetary magnetic field. Solar wind observations show that reconnection in a turbulence broadened heliospheric current sheet, consistent with the Lazarian-Vishniac theory, leads to slip velocities that cause field lines to lag relative to the spiral model.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.