Home OALib Journal OALib PrePrints Submit Ranking News My Lib FAQ About Us Follow Us+
 Title Keywords Abstract Author All
Search Results: 1 - 10 of 100 matches for " "
 Page 1 /100 Display every page 5 10 20 Item
 Mathematics , 2015, Abstract: We introduce the concept of a weak nil clean ring, a generalization of nil clean ring, which is nothing but a ring with unity in which every element can be expressed as sum or difference of a nilpotent and an idempotent. Further if the idempotent and nilpotent commute the ring is called weak* nil clean. We characterize all $n\in \mathbb{N}$, for which $\mathbb{Z}_n$ is weak nil clean but not nil clean. We show that if $R$ is a weak* nil clean and $e$ is an idempotent in $R$, then the corner ring $eRe$ is also weak* nil clean. Also we discuss $S$-weak nil clean rings and their properties, where $S$ is a set of idempotents and show that if $S=\{0, 1\}$, then a $S$-weak nil clean ring contains a unique maximal ideal. Finally we show that weak* nil clean rings are exchange rings and strongly nil clean rings provided $2\in R$ is nilpotent in the later case. We have ended the paper with introduction of weak J-clean rings.
 Mathematics , 2012, Abstract: A *-ring $R$ is called a strongly nil-*-clean ring if every element of $R$ is the sum of a projection and a nilpotent element that commute with each other. In this article, we show that $R$ is a strongly nil-*-clean ring if and only if every idempotent in $R$ is a projection, $R$ is periodic, and $R/J(R)$ is Boolean. For any commutative *-ring $R$, we prove that the algebraic extension $R[i]$ where $i^2=\mu i+\eta$ for some $\mu,\eta\in R$ is strongly nil-*-clean if and only if $R$ is strongly nil-*-clean and $\mu\eta$ is nilpotent. The relationships between Boolean *-rings and strongly nil-*-clean rings are also obtained.
 Mathematics , 2013, Abstract: We characterize the nil clean matrix rings over fields. As a by product, it is proved that the full matrix rings with coefficients in commutative nil-clean rings are nil-clean, and we obtain a complete characterization of the finite rank Abelian groups with nil clean endomorphism ring and the Abelian groups with strongly nil clean endomorphism ring, respectively.