Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
The Minimal Deneddylase Core of the COP9 Signalosome Excludes the Csn6 MPN? Domain  [PDF]
Elah Pick, Amnon Golan, Jacob Z. Zimbler, Liquan Guo, Yehonatan Sharaby, Tomohiko Tsuge, Kay Hofmann, Ning Wei
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0043980
Abstract: The COP9 signalosome (CSN) is a eukaryotic protein complex, which regulates a wide range of biological processes mainly through modulating the cullin ubiquitin E3 ligases in the ubiquitin-proteasome pathway. The CSN possesses a highly conserved deneddylase activity that centers at the JAMM motif of the Csn5 subunit but requires other subunits in a complex assembly. The classic CSN is composed of 8 subunits (Csn1–8), yet in several Ascomycota, the complex is smaller and lacks orthologs for a few CSN subunits, but nevertheless contains a conserved Csn5. This feature makes yeast a powerful model to determine the minimal assemblage required for deneddylation activity. Here we report, that Csi1, a diverged S. cerevisiae CSN subunit, displays significant homology with the carboxyl terminal domain of the canonical Csn6, but lacks the amino terminal MPN- domain. Through the comparative and experimental analyses of the budding yeast and the mammalian CSNs, we demonstrate that the MPN? domain of the canonical mouse Csn6 is not part of the CSN deneddylase core. We also show that the carboxyl domain of Csn6 has an indispensable role in maintaining the integrity of the CSN complex. The CSN complex assembled with the carboxyl fragment of Csn6, despite its lack of an MPN? domain, is fully active in deneddylation of cullins. We propose that the budding yeast Csi1 is a functional equivalent of the canonical Csn6, and thus the composition of the CSN across phyla is more conserved than hitherto appreciated.
Downregulation of COP9 signalosome subunits differentially affects the CSN complex and target protein stability
Andreas Peth, Christoph Berndt, Wolfgang Henke, Wolfgang Dubiel
BMC Biochemistry , 2007, DOI: 10.1186/1471-2091-8-27
Abstract: Permanent knockdowns of CSN1 and CSN3 led to a reduction of the subunits to approximately 40%, which is accompanied by a proportional decrease of the CSN holocomplex. In contrast, downregulation of CSN5 in HeLa cells reduced the CSN5 protein below 20% without significant effects on the remaining complex. The CRL component Rbx1 was characterized by accelerated proteolysis in siCSN1 and siCSN3 and also in siCSN5 cells, however, with lesser extent. Immunoprecipitated CSN complex from siCSN5 cells was less effective in phosphorylating c-Jun and p27. Accelerated degradation of c-Jun in siCSN5 cells was rescued by overexpression of CSN5 as well as of the deneddylation mutant CSN5D151N. Overexpression of CSN5 cannot rescue c-Jun destabilization in siCSN1.There exists a coordinated downregulation of CSN subunits in the CSN1 and CSN3 knockdowns. The underlying regulatory mechanisms are obscure. CSN5 seems to possess a specific status in HeLa cells. Its reduction is not connected with coordinated downregulation of other subunits. CSN knockdowns confirm that the stabilization of the CRL component Rbx1 is a major CSN function. In addition, downregulation of CSN subunits influences the stability of important cellular regulators such as c-Jun and p27.The COP9 signalosome (CSN) is a conserved protein complex, which controls eukaryotic protein degradation via the ubiquitin (Ub) proteasome system (UPS) [1,2]. In mammals the core complex consists of 8 subunits (CSN1 to CSN8) [3], the exact function of which is not exactly known. CSN5 exhibits a MPN+/JAMM domain [4,5] responsible for metalloprotease activity. As a complex-bound protein CSN5 removes NEDD8, an ubiquitin-like protein, from cullins. This cleavage of an isopeptide bond called deneddylation controls the ubiquitination by cullin-RING Ub ligases (CRLs), a large family of multisubunit E3s [6,7]. Cullin proteins (Cul1 to Cul7) are components of CRLs functioning as scaffolds of the Ub ligase complexes. Cullin neddylation and den
The eta7/csn3-3 Auxin Response Mutant of Arabidopsis Defines a Novel Function for the CSN3 Subunit of the COP9 Signalosome  [PDF]
He Huang, Marcel Quint, William M. Gray
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0066578
Abstract: The COP9 signalosome (CSN) is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCFTIR1/AFB ubiquitin-ligase (deneddylation). Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3), designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCFTIR1-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.
Analysis of the role of COP9 Signalosome (CSN) subunits in K562; the first link between CSN and autophagy
Claire Pearce, Rachel E Hayden, Christopher M Bunce, Farhat L Khanim
BMC Cell Biology , 2009, DOI: 10.1186/1471-2121-10-31
Abstract: Greater than 95% knockdown of the non-catalytic subunit CSN2 and the deneddylating subunit CSN5 of the CSN was achieved in the human myeloid progenitor cell line K562. CSN2 knockdown led to a reduction of both CSN5 protein and mRNA whilst CSN5 knockdown had little effect on CSN2. Both knockdowns inhibited CSN deneddylase function as demonstrated by accumulation of neddylated Cul1. Furthermore, both knockdowns resulted in the sequential loss of Skp2, Cdc4 and β-TrCP F-box proteins. These proteins were rescued by the proteasome inhibitor MG132, indicating the autocatalytic degradation of F-box proteins upon loss of CSN2 or CSN5. Interestingly, altered F-box protein gene expression was also observed in CSN2 and CSN5 knockdowns, suggesting a potential role of the CSN in regulating F-box protein transcription.Loss of either CSN subunit dramatically reduced cell growth but resulted in distinct patterns of cell death. CSN5 knockdown caused mitotic defects, G2/M arrest and apoptotic cell death. CSN2 knockdown resulted in non-apoptotic cell death associated with accumulation of both the autophagy marker LC3-II and autophagic vacuoles. Treatment of vector control K562 cells with the autophagy inhibitors 3-methyladenine and bafilomycin A1 recapitulated the growth kinetics, vacuolar morphology and LC3-II accumulation of CSN2 knockdown cells indicating that the cellular phenotype of CSN2 cells arises from autophagy inhibition. Finally, loss of CSN2 was associated with the formation of a CSN5 containing subcomplex.We conclude that CSN2 is required for CSN integrity and the stability of individual CSN subunits, and postulate that CSN2 loss results in a phenotype distinct from that of cells lacking CSN5 possibly as a consequence of altered CSN5 activity within a resultant CSN subcomplex. Our data present the first evidence for the sequential loss of F-box proteins upon CSN manipulation and are the first to identify a potential link between CSN function and autophagy.The regulated e
Dual Regulation of Dendritic Morphogenesis in Drosophila by the COP9 Signalosome  [PDF]
Inna Djagaeva,Sergey Doronkin
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0007577
Abstract: Altered dendritic arborization contributes to numerous physiological processes including synaptic plasticity, behavior, learning and memory, and is one of the most consistent neuropathologic conditions found in a number of mental retardation disorders, schizophrenia, and neurodegenerative disease. COP9 signalosome (CSN), an evolutionarily conserved regulator of the Cullin-based ubiquitin ligases that act in the proteasome pathway, has been found associated with diverse debilitating syndromes, suggesting that CSN may be involved in regulation of dendritic arborization. However, the mechanism of this control, if it exists, is unknown. To address whether the CSN pathway plays a role in dendrites, we used a simple and genetically tractable model, Drosophila larval peripheral nervous system. Our model study identified the COP9 signalosome as the key and multilayer regulator of dendritic arborization. CSN is responsible for shaping the entire dendritic tree through both stimulating and then repressing dendritic branching. We identified that CSN exerts its dualistic function via control of different Cullins. In particular, CSN stimulates dendritic branching through Cullin1, and inhibits it via control of Cullin3 function. We also identified that Cullin1 acts in neurons with the substrate-specific F-box protein Slimb to target the Cubitus interruptus protein for degradation.
COP9 Signalosome Component JAB1/CSN5 Is Necessary for T Cell Signaling through LFA-1 and HIV-1 Replication  [PDF]
Shigemi M. Kinoshita, Peter O. Krutzik, Garry P. Nolan
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0041725
Abstract: To determine critical host factors involved in HIV-1 replication, a dominant effector genetics approach was developed to reveal signaling pathways on which HIV-1 depends for replication. A large library of short peptide aptamers was expressed via retroviral delivery in T cells. Peptides that interfered with T cell activation-dependent processes that might support HIV-1 replication were identified. One of the selected peptides altered signaling, lead to a difference in T cell activation status, and inhibited HIV-1 replication. The target of the peptide was JAB1/CSN5, a component of the signalosome complex. JAB1 expression overcame the inhibition of HIV-1 replication in the presence of peptide and also promoted HIV-1 replication in activated primary CD4+ T cells. This peptide blocked physiological release of JAB1 from the accessory T cell surface protein LFA-1, downstream AP-1 dependent events, NFAT activation, and HIV-1 replication. Thus, genetic selection for intracellular aptamer inhibitors of host cell processes proximal to signals at the immunological synapse of T cells can define unique mechanisms important to HIV-1 replication.
Conservation of the COP9/signalosome in budding yeast
Susan Wee, Bettina Hetfeld, Wolfgang Dubiel, Dieter A Wolf
BMC Genetics , 2002, DOI: 10.1186/1471-2156-3-15
Abstract: We show that disruption of four budding yeast genes, PCI8 and three previously uncharacterized ORFs, which encode proteins interacting with Rrr1p/Csn5p, each results in the accumulation of the cullin Cdc53p exclusively in the Rub1p-modified state. This phenotype, which resembles that of fission yeast csn mutants, is due to a biochemical defect in deneddylation that is complemented by wild-type cell lysate and by purified human CSN in vitro. Although three of the four genes encode proteins with PCI domains conserved in metazoan CSN proteins, their disruption does not confer the DNA damage sensitivity described in some fission yeast csn mutants.Our studies present unexpected evidence for the conservation of a functional homologue of the metazoan CSN, which mediates control of cullin neddylation in budding yeast.The COP9/signalosome (CSN) was first identified in Arabidopsis thaliana as an eight subunit complex involved in the suppression of light-dependent development [1]. Subsequent studies have led to the identification of similar complexes in other plant species, Drosophila melanogaster, human cells, and fission yeast [2-7], thus indicating a high degree of structural conservation during evolution. Cloning of CSN subunits revealed their structural similarities to the eight subunits of the lid complex of the 26S proteasome [3,8-10]. The similarity was most pronounced within the so-called MPN domains of CSN5 and 6 and the PCI domains of the remaining subunits [11].CSN has been implicated in multiple biological processes, many involving ubiquitin-mediated proteolysis (reviewed in [12,13]). For example, CSN is required for degradation of the plant transcription factor HY5 by the putative COP1 ubiquitin ligase [14]. In addition, CSN is involved in auxin-induced turn-over of the transcriptional repressor AUX/IAA [15]. This process is mediated by an ubiquitin ligase [15] related to SCF complexes first identified in budding yeast [16,17]. All SCF complexes share the core su
Function of COP9 Signalosome in Regulation of Mouse Oocytes Meiosis by Regulating MPF Activity and Securing Degradation  [PDF]
Eunju Kim, Se-Jin Yoon, Eun-Young Kim, Yunna Kim, Hyun-Seo Lee, Kyeoung-Hwa Kim, Kyung-Ah Lee
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0025870
Abstract: The COP9 (constitutive photomorphogenic) signalosome (CSN), composed of eight subunits, is a highly conserved protein complex that regulates processes such as cell cycle progression and kinase signalling. Previously, we found the expression of the COP9 constitutive photomorphogenic homolog subunit 3 (CSN3) and subunit 5 (CSN5) changes as oocytes mature for the first time, and there is no report regarding roles of COP9 in the mammalian oocytes. Therefore, in the present study, we examined the effects of RNA interference (RNAi)-mediated transient knockdown of each subunit on the meiotic cell cycle in mice oocytes. Following knockdown of either CSN3 or CSN5, oocytes failed to complete meiosis I. These arrested oocytes exhibited a disrupted meiotic spindle and misarranged chromosomes. Moreover, down-regulation of each subunit disrupted the activity of maturation-promoting factor (MPF) and concurrently reduced degradation of the anaphase-promoting complex/cyclosome (APC/C) substrates Cyclin B1 and Securin. Our data suggest that the CSN3 and CSN5 are involved in oocyte meiosis by regulating degradation of Cyclin B1 and Securin via APC/C.
Neurospora COP9 Signalosome Integrity Plays Major Roles for Hyphal Growth, Conidial Development, and Circadian Function  [PDF]
Zhipeng Zhou,Ying Wang,Gaihong Cai,Qun He
PLOS Genetics , 2012, DOI: 10.1371/journal.pgen.1002712
Abstract: The COP9 signalosome (CSN) is a highly conserved multifunctional complex that has two major biochemical roles: cleaving NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point mutations of key residues in the metal-binding motif (EXnHXHX10D) of the CSN-5 JAMM domain disrupted CSN deneddylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins. Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCFFWD-1 complex and partially restore the degradation of the circadian clock protein FREQUENCY (FRQ) in vivo. Furthermore, we showed that CSN containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa.
Control of Multicellular Development by the Physically Interacting Deneddylases DEN1/DenA and COP9 Signalosome  [PDF]
Martin Christmann equal contributor,Tilo Schmaler equal contributor,Colin Gordon,Xiaohua Huang,?zgür Bayram,Josua Schinke,Sina Stumpf,Wolfgang Dubiel ,Gerhard H. Braus
PLOS Genetics , 2013, DOI: 10.1371/journal.pgen.1003275
Abstract: Deneddylases remove the ubiquitin-like protein Nedd8 from modified proteins. An increased deneddylase activity has been associated with various human cancers. In contrast, we show here that a mutant strain of the model fungus Aspergillus nidulans deficient in two deneddylases is viable but can only grow as a filament and is highly impaired for multicellular development. The DEN1/DenA and the COP9 signalosome (CSN) deneddylases physically interact in A. nidulans as well as in human cells, and CSN targets DEN1/DenA for protein degradation. Fungal development responds to light and requires both deneddylases for an appropriate light reaction. In contrast to CSN, which is necessary for sexual development, DEN1/DenA is required for asexual development. The CSN-DEN1/DenA interaction that affects DEN1/DenA protein levels presumably balances cellular deneddylase activity. A deneddylase disequilibrium impairs multicellular development and suggests that control of deneddylase activity is important for multicellular development.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.