Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Interferon-α Regulates Glutaminase 1 Promoter through STAT1 Phosphorylation: Relevance to HIV-1 Associated Neurocognitive Disorders  [PDF]
Lixia Zhao, Yunlong Huang, Changhai Tian, Lynn Taylor, Norman Curthoys, Yi Wang, Hamilton Vernon, Jialin Zheng
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0032995
Abstract: HIV-1 associated neurocognitive disorders (HAND) develop during progressive HIV-1 infection and affect up to 50% of infected individuals. Activated microglia and macrophages are critical cell populations that are involved in the pathogenesis of HAND, which is specifically related to the production and release of various soluble neurotoxic factors including glutamate. In the central nervous system (CNS), glutamate is typically derived from glutamine by mitochondrial enzyme glutaminase. Our previous study has shown that glutaminase is upregulated in HIV-1 infected monocyte-derived-macrophages (MDM) and microglia. However, how HIV-1 leads to glutaminase upregulation, or how glutaminase expression is regulated in general, remains unclear. In this study, using a dual-luciferase reporter assay system, we demonstrated that interferon (IFN) α specifically activated the glutaminase 1 (GLS1) promoter. Furthermore, IFN-α treatment increased signal transducer and activator of transcription 1 (STAT1) phosphorylation and glutaminase mRNA and protein levels. IFN-α stimulation of GLS1 promoter activity correlated to STAT1 phosphorylation and was reduced by fludarabine, a chemical that inhibits STAT1 phosphorylation. Interestingly, STAT1 was found to directly bind to the GLS1 promoter in MDM, an effect that was dependent on STAT1 phosphorylation and significantly enhanced by IFN-α treatment. More importantly, HIV-1 infection increased STAT1 phosphorylation and STAT1 binding to the GLS1 promoter, which was associated with increased glutamate levels. The clinical relevance of these findings was further corroborated with investigation of post-mortem brain tissues. The glutaminase C (GAC, one isoform of GLS1) mRNA levels in HIV associated-dementia (HAD) individuals correlate with STAT1 (p<0.01), IFN-α (p<0.05) and IFN-β (p<0.01). Together, these data indicate that both HIV-1 infection and IFN-α treatment increase glutaminase expression through STAT1 phosphorylation and by binding to the GLS1 promoter. Since glutaminase is a potential component of elevated glutamate production during the pathogenesis of HAND, our data will help to identify additional therapeutic targets for the treatment of HAND.
STAT1 Interacts with RXRα to Upregulate ApoCII Gene Expression in Macrophages  [PDF]
Violeta G. Trusca, Irina C. Florea, Dimitris Kardassis, Anca V. Gafencu
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0040463
Abstract: Apolipoprotein CII (apoCII) is a specific activator of lipoprotein lipase and plays an important role in triglyceride metabolism. The aim of our work was to elucidate the regulatory mechanisms involved in apoCII gene modulation in macrophages. Using Chromosome Conformation Capture we demonstrated that multienhancer 2 (ME.2) physically interacts with the apoCII promoter and this interaction facilitates the transcriptional enhancement of the apoCII promoter by the transcription factors bound on ME.2. We revealed that the transcription factor STAT1, previously shown to bind to its specific site on ME.2, is functional for apoCII gene upregulation. We found that siRNA-mediated inhibition of STAT1 gene expression significantly decreased the apoCII levels, while STAT1 overexpression in RAW 264.7 macrophages increased apoCII gene expression. Using transient transfections, DNA pull down and chromatin immunoprecipitation assays, we revealed a novel STAT1 binding site in the ?500/?493 region of the apoCII promoter, which mediates apoCII promoter upregulation by STAT1. Interestingly, STAT1 could not exert its upregulatory effect when the RXRα/T3Rβ binding site located on the apoCII promoter was mutated, suggesting physical and functional interactions between these factors. Using GST pull-down and co-immunoprecipitation assays, we demonstrated that STAT1 physically interacts with RXRα. Taken together, these data revealed that STAT1 bound on ME.2 cooperates with RXRα located on apoCII promoter and upregulates apoCII expression only in macrophages, due to the specificity of the long-range interactions between the proximal and distal regulatory elements. Moreover, we showed for the first time that STAT1 and RXRα physically interact to exert their regulatory function.
Impaired Chromatin Remodelling at STAT1-Regulated Promoters Leads to Global Unresponsiveness of Toxoplasma gondii-Infected Macrophages to IFN-γ  [PDF]
Christine Lang,Anke Hildebrandt,Franziska Brand,Lennart Opitz,Hassan Dihazi,Carsten G. K. Lüder
PLOS Pathogens , 2012, DOI: 10.1371/journal.ppat.1002483
Abstract: Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites' replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors.
A Co-Culture Model of the Developing Small Intestine Offers New Insight in the Early Immunomodulation of Enterocytes and Macrophages by Lactobacillus spp. through STAT1 and NF-kB p65 Translocation  [PDF]
Martin Trapecar, Ales Goropevsek, Mario Gorenjak, Lidija Gradisnik, Marjan Slak Rupnik
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0086297
Abstract: The early establishment of a complete microbiome has been shown to play an integral part in the development and maintenance of an intact intestine and its immune system, although much remains unknown about the specific mechanisms of immune modulation in newborns. In our study we show in a co-culture model of the undeveloped small intestine that members of Lactobacillus spp. influence STAT1 and NF-kB p65 nuclear translocation in both intestinal epithelial cells as well as underlying macrophages. Moreover, by using imaging flow cytometry we were able to monitor each individual cell and create a framework of the percentage of cells in which translocation occurred in challenged versus control cell populations. We also observed a significant difference in baseline translocation in intestinal cells when cultured alone versus those in a co-culture model, underpinning the importance of 3D models over monolayer set-ups in epithelial in vitro research. In conclusion, our work offers new insights into the potential routes by which the commensal microbiome primes the early immune system to fight pathogens, and shows how strain-specific these mechanisms really are.
Two glutamic acid residues in the DNA-binding domain are engaged in the release of STAT1 dimers from DNA  [cached]
Koch Verena,Staab Julia,Ruppert Volker,Meyer Thomas
BMC Cell Biology , 2012, DOI: 10.1186/1471-2121-13-22
Abstract: Background In interferon-γ-stimulated cells, the dimeric transcription factor STAT1 (signal transducer and activator of transcription 1) recognizes semi-palindromic motifs in the promoter regions of cytokine-driven target genes termed GAS (gamma-activated sites). However, the molecular steps that facilitate GAS binding and the subsequent liberation of STAT1 homodimers from these promoter elements are not well understood. Results Using a mutational approach, we identified two critical glutamyl residues within the DNA-binding domain adjacent to the phosphodiester backbone of DNA which efficiently release phospho-STAT1 from DNA. The release of STAT1 dimers from DNA enhances transcriptional activity on both interferon-driven reporter and endogenous target genes. A substitution of either of the two glutamic acid residues broadens the repertoire of putative binding sites on DNA and enhances binding affinity to GAS sites. However, despite elevated levels of tyrosine phosphorylation and a prolonged nuclear accumulation period, the STAT1 DNA-binding mutants show a significantly reduced transcriptional activity upon stimulation of cells with interferon-γ. This reduced transcriptional response may be explained by the deposition of oligomerized STAT1 molecules outside GAS sites. Conclusions Thus, two negatively charged amino acid residues in the DNA-binding domain are engaged in the liberation of STAT1 from DNA, resulting in a high dissociation rate from non-GAS sites as a key feature of STAT1 signal transduction, which positively regulates cytokine-dependent gene expression probably by preventing retention at transcriptionally inert sites.
Mammalian Glutaminase Gls2 Gene Encodes Two Functional Alternative Transcripts by a Surrogate Promoter Usage Mechanism  [PDF]
Mercedes Martín-Rufián, Marta Tosina, José A. Campos-Sandoval, Elisa Manzanares, Carolina Lobo, J. A. Segura, Francisco J. Alonso, José M. Matés, Javier Márquez
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0038380
Abstract: Background Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene. Methodology/Principal Findings We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA) and long (GAB) transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS) and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed. Conclusions/Significance This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and LGA transcripts was species- and tissue-specific providing evidence of a differential regulation of GLS2 transcripts in mammals.
Involvement of Stat1 in the Phagocytosis of M. avium
Sabrina Dominici,Giuditta Fiorella Schiavano,Mauro Magnani,Costantina Buondelmonte,Angela Gabriela Celeste,Giorgio Brandi
Clinical and Developmental Immunology , 2012, DOI: 10.1155/2012/652683
Abstract: Mycobacterium avium is an intracellular pathogen preferentially infecting human macrophages where they activate the JAK/STAT1 pathway. This activation enhances the survival of infected cells, but, at the same time, makes macrophages optimal targets for drugs development against p-tyr701stat1. In this study, we demonstrate that the fast and transient activity of the JAK/STAT1 pathway occurs immediately after macrophages internalization of heat-killed M. avium or inert particles. Furthermore, we show that a persistent Stat1 pathway activation occurs only when an intracellular M. avium infection is established in macrophages. These results strongly indicate different mechanisms of p-tyr701Stat1 activation. In particular, here we report findings aiming at explaining the short-time enhancement of p-tyr701Stat1 and shows its predominant relationship with FcγRs engagement during the internalization process. Furthermore, we demonstrate that opsonized live M. avium is phagocytosed by macrophages involving membrane receptors not related with JAK/STAT1 signalling pathway. On the contrary, heat-inactivated bacilli or latex particles seem to be internalized only after involvement of FcγRs and subsequent Stat1 phosphorylation.
Proximal genomic localization of STAT1 binding and regulated transcriptional activity
Samuel Wormald, Douglas J Hilton, Gordon K Smyth, Terence P Speed
BMC Genomics , 2006, DOI: 10.1186/1471-2164-7-254
Abstract: In response to IFN-γ, STAT1 bound proximally to regions of the genome that exhibit regulated transcriptional activity. This finding was consistent between different tiling microarray platforms, and between different measures of transcriptional activity, including differential binding of RNA polymerase II, and differential mRNA transcription. Re-analysis of tiling microarray data from a recent study of IFN-γ-induced STAT1 ChIP-chip and mRNA expression revealed that STAT1 binding is tightly associated with localized mRNA transcription in response to IFN-γ. Close relationships were also apparent between STAT1 binding, STAT2 binding, and mRNA transcription in response to IFN-α. Furthermore, we found that sites of STAT1 binding within the Encyclopedia of DNA Elements (ENCODE) region are precisely correlated with sites of either enhanced or diminished binding by the RNA polymerase II complex.Together, our results indicate that STAT1 binds proximally to regions of the genome that exhibit regulated transcriptional activity. This finding establishes a generalized basis for the positioning of STAT1 binding sites within the genome, and supports a role for STAT1 in the direct recruitment of the RNA polymerase II complex to the promoters of IFN-γ-responsive genes.Interferon-gamma (IFN-γ) is a potent pro-inflammatory cytokine that regulates a spectrum of biological processes, and is produced primarily in response to infection [1]. IFN-γ signal transduction begins at the cell surface with the formation of a heteromeric protein complex that includes IFN-γ, IFN-γ receptor-1, and IFN-γ receptor-2 [1]. Associated with the IFN-γ receptors are members of the Janus kinase (JAK) family of tyrosine kinases, which become activated upon formation of the IFN-γ receptor complex, and in turn phosphorylate the signal transducer and activator of transcription-1 (STAT1) transcription factor [2-4]. Upon its phosphorylation, STAT1 homo-dimerizes, and is transported into the nucleus where it binds to
STAT3 but Not STAT1 Is Required for Astrocyte Differentiation  [PDF]
Seulgi Hong, Mi-Ryoung Song
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0086851
Abstract: The JAK-STAT signaling pathway has been implicated in astrocyte differentiation. Both STAT1 and STAT3 are expressed in the central nervous system and are thought to be important for glial differentiation, as mainly demonstrated in vitro; however direct in vivo evidence is missing. We investigated whether STAT1 and STAT3 are essential for astrocyte development by testing the STAT responsiveness of astrocyte progenitors. STAT3 was absent in the ventricular zone where glial progenitors are born but begins to appear at the marginal zone at E16.5. At E18.5, both phospho-STAT1 and phospho-STAT3 were present in glial fibrillary acidic protein (GFAP)-expressing white matter astrocytes. Overexpression of STAT3 by electroporation of chicks in ovo induced increased numbers of astrocyte progenitors in the spinal cord. Likewise, elimination of STAT3 in Stat3 conditional knockout (cKO) mice resulted in depletion of white matter astrocytes. Interestingly, elimination of STAT1 in Stat1 null mice did not inhibit astrocyte differentiation and deletion of Stat1 failed to aggravate the glial defects in Stat3 cKO mice. Measuring the activity of STAT binding elements and the gfap promoter in the presence of various STAT mutants revealed that transactivation depended on the activity of STAT3 not STAT1. No synergistic interaction between STAT1 and STAT3 was observed. Cortical progenitors of Stat1 null; Stat3 cKO mice generated astrocytes when STAT3 or the splice variant Stat3β was supplied, but not when STAT1 was introduced. Together, our results suggest that STAT3 is necessary and sufficient for astrocyte differentiation whereas STAT1 is dispensable.
Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1  [cached]
Gr?nholm Juha,Vanhatupa Sari,Ungureanu Daniela,V?liaho Jouni
BMC Biochemistry , 2012, DOI: 10.1186/1471-2091-13-20
Abstract: Background STAT1 is an essential transcription factor for interferon-γ-mediated gene responses. A distinct sumoylation consensus site (ψKxE) 702IKTE705 is localized in the C-terminal region of STAT1, where Lys703 is a target for PIAS-induced SUMO modification. Several studies indicate that sumoylation has an inhibitory role on STAT1-mediated gene expression but the molecular mechanisms are not fully understood. Results Here, we have performed a structural and functional analysis of sumoylation in STAT1. We show that deconjugation of SUMO by SENP1 enhances the transcriptional activity of STAT1, confirming a negative regulatory effect of sumoylation on STAT1 activity. Inspection of molecular model indicated that consensus site is well exposed to SUMO-conjugation in STAT1 homodimer and that the conjugated SUMO moiety is directed towards DNA, thus able to form a sterical hindrance affecting promoter binding of dimeric STAT1. In addition, oligoprecipitation experiments indicated that sumoylation deficient STAT1 E705Q mutant has higher DNA-binding activity on STAT1 responsive gene promoters than wild-type STAT1. Furthermore, sumoylation deficient STAT1 E705Q mutant displayed enhanced histone H4 acetylation on interferon-γ-responsive promoter compared to wild-type STAT1. Conclusions Our results suggest that sumoylation participates in regulation of STAT1 responses by modulating DNA-binding properties of STAT1.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.