oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Quantitative characterization and analysis of the dynamic NF-κB response in microglia
Patrick W Sheppard, Xiaoyun Sun, John F Emery, Rona G Giffard, Mustafa Khammash
BMC Bioinformatics , 2011, DOI: 10.1186/1471-2105-12-276
Abstract: We quantify the dynamic response of NF-κB activation and activation of the upstream kinase IKK using ELISA measurements of a microglial cell line following treatment with the pro-inflammatory cytokine TNFα. A new mathematical model is developed based on these data sets using a modular procedure that exploits the feedback structure of the network. We show that the new model requires previously unmodeled dynamics involved in the stimulus-induced degradation of the inhibitor IκBα in order to properly describe microglial NF-κB activation in a statistically consistent manner. This suggests a more prominent role for the ubiquitin-proteasome system in regulating the activation of NF-κB to inflammatory stimuli. We also find that the introduction of nonlinearities in the kinetics of IKK activation and inactivation is essential for proper characterization of transient IKK activity and corresponds to known biological mechanisms. Numerical analyses of the model highlight key regulators of the microglial NF-κB response, as well as those governing IKK activation. Results illustrate the dynamic regulatory mechanisms and the robust yet fragile nature of the negative feedback regulated network.We have developed a new mathematical model that incorporates previously unmodeled dynamics to characterize the dynamic response of the NF-κB signaling network in microglia. This model is the first of its kind for microglia and provides a tool for the quantitative, systems level study the dynamic cellular response to inflammatory stimuli.The nuclear factor-κB (NF-κB) transcription factor is ubiquitously expressed in mamallian cells and regulates the expression of many target genes. In the nervous system NF-κB is known to play a key role in the immune and injury responses and in governing normal brain function [1]. During cerebral ischemia NF-κB is a primary regulator of the inflammatory response to ischemic injury, affecting cell death and survival [2]. Microglia, the resident immune cells in t
Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia  [cached]
Yao Linli,Kan Enci Mary,Lu Jia,Hao Aijun
Journal of Neuroinflammation , 2013, DOI: 10.1186/1742-2094-10-23
Abstract: Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4 downregulation-mediated inhibition of inflammatory cytokines in primary microglia and BV-2 cells was accompanied by the suppression of NF-κB activation. Furthermore, HIF-1α antibody neutralization attenuated the increase of TLR4 expression in hypoxic BV-2 cells. TLR4 inhibition in vivo attenuated the immunoexpression of TNF-α, IL-1β and iNOS on microglia post-hypoxia. Conclusion Activated microglia TLR4 expression mediated neuroinflammation via a NF-κB signaling pathway in response to hypoxia. Hence, microglia TLR4 presents as a potential therapeutic target for neonatal hypoxia brain injurie
Reactive Oxygen Species Released from Hypoxic Hepatocytes Regulates MMP-2 Expression in Hepatic Stellate Cells  [PDF]
Jing Li,Renhua Fan,Susu Zhao,Leilei Liu,Shanshan Guo,Nan Wu,Wandong Zhang,Pingsheng Chen
International Journal of Molecular Sciences , 2011, DOI: 10.3390/ijms12042434
Abstract: Hypoxia is a common environmental stress factor and is associated with fibrogenesis. Matrix metalloproteinase-2 (MMP-2), produced by hepatic stellate cells (HSCs), plays an important role in liver fibrogenesis. However, inconsistent results have been reported on the impact of hypoxia on MMP-2 expression and activity in HSCs. We speculated that cell–cell interaction is involved in the regulation of MMP-2 expression and activity at low oxygen level in vivo. Therefore, in this report we investigated the mechanism by which hypoxic hepatocytes regulates MMP-2 expression in HSCs. Our results showed that the conditioned medium from hypoxia-treated rat hepatocytes strongly induced the expression of MMP-2 mRNA and protein in rat HSC-T6 cells. Reduced glutathione neutralized ROS released from hypoxic hepatocytes, leading to reduced MMP-2 expression in HSC-T6 cells. In addition, phospho-IκB-α protein level was increased in HSC-T6 cells treated with hypoxia conditioned medium, and NF-κB signaling inhibitor inhibited MMP-2 expression in HSC-T6 cells. Taken together, our data suggest that ROS is an important factor released by hypoxic hepatocytes to regulate MMP-2 expression in HSCs, and NF-κB signaling is crucially involved in ROS-induced MMP-2 expression in HSCs. Our findings suggest that strategies aimed at antagonizing the generation of ROS in hypoxic hepatocytes and inhibiting NF-κB signaling in HSCs may represent novel therapeutic options for liver fibrosis.
Augmented Osteogenic Responses in Human Aortic Valve Cells Exposed to oxLDL and TLR4 Agonist: A Mechanistic Role of Notch1 and NF-κB Interaction  [PDF]
Qingchun Zeng, Rui Song, Lihua Ao, Dingli Xu, Neil Venardos, David A. Fullerton, Xianzhong Meng
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0095400
Abstract: Aortic valve calcification causes the progression of calcific aortic valve disease (CAVD). Stimulation of aortic valve interstitial cells (AVICs) with lipopolysaccharide (LPS) up-regulates the expression of osteogenic mediators, and NF-κB plays a central role in mediating AVIC osteogenic responses to Toll-like receptor 4 (TLR4) stimulation. Diseased aortic valves exhibit greater levels of oxidized low-density lipoprotein (oxLDL). This study tested the hypothesis that oxLDL augments the osteogenic responses in human AVICs through modulation of NF-κB and Notch1 activation. AVICs isolated from normal human aortic valves were treated with LPS (0.1 μg/ml), oxLDL (20 μg/ml) or LPS plus oxLDL for 48 h. OxLDL alone increased cellular bone morphogenetic protein-2 (BMP-2) levels while it had no effect on alkaline phosphatase (ALP) levels. Cells exposed to LPS plus oxLDL produced higher levels of BMP-2 and ALP than cells exposed to LPS alone. Further, LPS plus oxLDL induced greater NF-κB activation, and inhibition of NF-κB markedly reduced the expression of BMP-2 and ALP in cells treated with LPS plus oxLDL. OxLDL also induced Notch1 activation and resulted in augmented Notch1 activation when it was combined with LPS. Inhibition of Notch1 cleavage attenuated NF-κB activation induced by LPS plus oxLDL, and inhibition of NF-κB suppressed the expression of BMP-2 and ALP induced by the synergistic effect of Jagged1 and LPS. These findings demonstrate that oxLDL up-regulates BMP-2 expression in human AVICs and synergizes with LPS to elicit augmented AVIC osteogenic responses. OxLDL exerts its effect through modulation of the Notch1-NF-κB signaling cascade. Thus, oxLDL may play a role in the mechanism underlying CAVD progression.
NF-κB signaling regulates myelination in the CNS  [PDF]
Thomas Blank,Marco Prinz
Frontiers in Molecular Neuroscience , 2014, DOI: 10.3389/fnmol.2014.00047
Abstract: Besides myelination of neuronal axons by oligodendrocytes to facilitate propagation of action potentials, oligodendrocytes also support axon survival and function. A key transcription factor involved in these processes is nuclear factor-κB (NF-κB), a hetero or homodimer of the Rel family of proteins, including p65, c-Rel, RelB, p50, and p52. Under unstimulated, NF-κB remains inactive in the cytoplasm through interaction with NF-κB inhibitors (IκBs). Upon activation of NF-κB the cytoplasmic IκBs gets degradated, allowing the translocation of NF-κB into the nucleus where the dimer binds to the κB consensus DNA sequence and regulates gene transcription. In this review we describe how oligodendrocytes are, directly or indirectly via neighboring cells, regulated by NF-κB signaling with consequences for innate and adaptive immunity and for regulation of cell apoptosis and survival.
Impacts of Mild Hypothermia on LPS-Mediated TLR4/NF-κB Signaling Pathway in Microglia  [PDF]
Li Liu, Xiaoshuang Li, Yaoyao Wang, Fang Cao, Shihai Zhang, Zhen Zhan, Yangyang Meng, Qilian Xie
Journal of Biosciences and Medicines (JBM) , 2019, DOI: 10.4236/jbm.2019.72008
Abstract: Background: Existing studies have found that some inflammatory factors cause brain cell damage through the TLR4/NF-κB pathway, and that mild hypothermia has a protective effect on nerve cells. It is not clear whether the mild hypothermic brain protection is achieved through the TLR4/NF-κB pathway in microglia. Objective: To investigate the impacts of mild hypothermia on lipopolysaccharide (LPS)-mediated TLR4/NF-κB signaling pathway in microglia. Method: The cultured microglia cells in vitro were divided into the NS group and the LPS group at 33?C and 37?C, respectively; quantitative RT-PCR was performed to detect the expressions of TLR4 and NF-κB mRNA in the microglia, Western blot was used to detect the expressions of TLR4 and NF-κB protein in the microglia, and ELISA was performed to detect the levels of tumor necrosis factor α (TNF-α) and interleukin-10 (IL-10) in the culture medium. Results: Under the LPS stimulation, the mRNA and protein expressions of TLR4 and NF-κB at different time points had significant changes between the normothermia group and the mild hypothermia group, in which the expressions in the former group were firstly increased and then decreased, while those in the latter showed a continuous increasing trend (P < 0.01); and the expressions of TNF-α in all the groups presented the trend of first-increasing then-decreasing, while IL-10 exhibited one slow linear increasing trend (P < 0.01). Conclusions: Mild hypothermia could inhibit the mRNA and protein expressions of LPS-mediated TLR4/NF-κB signaling pathway in the microglia, and inhibit the production and release of downstream inflammatory cytokines (TNF-α and IL-10).
Notch Signaling Regulates Bile Duct Morphogenesis in Mice  [PDF]
Julie Lozier, Brent McCright, Thomas Gridley
PLOS ONE , 2008, DOI: 10.1371/journal.pone.0001851
Abstract: Background Alagille syndrome is a developmental disorder caused predominantly by mutations in the Jagged1 (JAG1) gene, which encodes a ligand for Notch family receptors. A characteristic feature of Alagille syndrome is intrahepatic bile duct paucity. We described previously that mice doubly heterozygous for Jag1 and Notch2 mutations are an excellent model for Alagille syndrome. However, our previous study did not establish whether bile duct paucity in Jag1/Notch2 double heterozygous mice resulted from impaired differentiation of bile duct precursor cells, or from defects in bile duct morphogenesis. Methodology/Principal Findings Here we characterize embryonic biliary tract formation in our previously described Jag1/Notch2 double heterozygous Alagille syndrome model, and describe another mouse model of bile duct paucity resulting from liver-specific deletion of the Notch2 gene. Conclusions/Significance Our data support a model in which bile duct paucity in Notch pathway loss of function mutant mice results from defects in bile duct morphogenesis rather than cell fate specification.
SIRT1 Regulates Endothelial Notch Signaling in Lung Cancer  [PDF]
Mian Xie, Ming Liu, Chao-Sheng He
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0045331
Abstract: Background Sirtuin 1 (SIRT1) acts as a key regulator of vascular endothelial homeostasis, angiogenesis, and endothelial dysfunction. However, the underlying mechanism for SIRT1-mediated lung carcinoma angiogenesis remains unknown. Herein, we report that the nicotinamide adenine dinucleotide 1 (NAD1)-dependent deacetylase SIRT1 can function as an intrinsic negative modulator of Delta-like ligand 4 (DLL4)/Notch signaling in Lewis lung carcinoma (LLC) xenograft-derived vascular endothelial cells (lung cancer-derived ECs). Principal Findings SIRT1 negatively regulates Notch1 intracellular domain (N1IC) and Notch1 target genes HEY1 and HEY2 in response to Delta-like ligand 4 (DLL4) stimulation. Furthermore, SIRT1 deacetylated and repressed N1IC expression. Quantitative chromatin immunoprecipitation (qChIP) analysis and gene reporter assay demonstrated that SIRT1 bound to one highly conserved region, which was located at approximately ?500 bp upstream of the transcriptional start site of Notch1,and repressed Notch1 transcription. Inhibition of endothelial cell growth and sprouting angiogenesis by DLL4/Notch signaling was enhanced in SIRT1-silenced lung cancer-derived EC and rescued by Notch inhibitor DAPT. In vivo, an increase in proangiogenic activity was observed in Matrigel plugs from endothelial-specific SIRT1 knock-in mice. SIRT1 also enhanced tumor neovascularization and tumor growth of LLC xenografts. Conclusions Our results show that SIRT1 facilitates endothelial cell branching and proliferation to increase vessel density and promote lung tumor growth through down-regulation of DLL4/Notch signaling and deacetylation of N1IC. Thus, targeting SIRT1 activity or/and gene expression may represent a novel mechanism in the treatment of lung cancer.
Notch-1 Signaling Promotes the Malignant Features of Human Breast Cancer through NF-κB Activation  [PDF]
Li Li, Fenglong Zhao, Juan Lu, Tingting Li, Hong Yang, Chunhui Wu, Yiyao Liu
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0095912
Abstract: The aberrant activation of Notch-1 signaling pathway has been proven to be associated with the development and progression of cancers. However, the specific roles and the underlying mechanisms of Notch-1 signaling pathway on the malignant behaviors of breast cancer are poorly understood. In this study, using multiple cellular and molecular approaches, we demonstrated that activation of Notch-1 signaling pathway promoted the malignant behaviors of MDA-MB-231 cells such as increased cell proliferation, colony formation, adhesion, migration, and invasion, and inhibited apoptosis; whereas deactivation of this signaling pathway led to the reversal of the aforementioned malignant cellular behaviors. Furthermore, we found that activation of Notch-1 signaling pathway triggered the activation of NF-κB signaling pathway and up-regulated the expression of NF-κB target genes including MMP-2/-9, VEGF, Survivin, Bcl-xL, and Cyclin D1. These results suggest that Notch-1 signaling pathway play important roles in promoting the malignant phenotype of breast cancer, which may be mediated partly through the activation of NF-κB signaling pathway. Our results further suggest that targeting Notch-1 signaling pathway may become a newer approach to halt the progression of breast cancer.
Artemisinin Attenuates Lipopolysaccharide-Stimulated Proinflammatory Responses by Inhibiting NF-κB Pathway in Microglia Cells  [PDF]
Cansheng Zhu, Zhaojun Xiong, Xiaohong Chen, Fuhua Peng, Xueqiang Hu, Yanming Chen, Qing Wang
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0035125
Abstract: Microglial activation plays an important role in neuroinflammation, which contributes to neuronal damage, and inhibition of microglial activation may have therapeutic benefits that could alleviate the progression of neurodegeneration. Recent studies have indicated that the antimalarial agent artemisinin has the ability to inhibit NF-κB activation. In this study, the inhibitory effects of artemisinin on the production of proinflammatory mediators were investigated in lipopolysaccharide (LPS)-stimulated primary microglia. Our results show that artemisinin significantly inhibited LPS-induced production of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1) and nitric oxide (NO). Artemisinin significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) and increased the protein levels of IκB-α, which forms a cytoplasmic inactive complex with the p65-p50 heterodimeric complex. Artemisinin treatment significantly inhibited basal and LPS-induced migration of BV-2 microglia. Electrophoretic mobility shift assays revealed increased NF-κB binding activity in LPS-stimulated primary microglia, and this increase could be prevented by artemisinin. The inhibitory effects of artemisinin on LPS-stimulated microglia were blocked after IκB-α was silenced with IκB-α siRNA. Our results suggest that artemisinin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The data provide direct evidence of the potential application of artemisinin for the treatment of neuroinflammatory diseases.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.