oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Whi3, an S. cerevisiae RNA-Binding Protein, Is a Component of Stress Granules That Regulates Levels of Its Target mRNAs  [PDF]
Kristen J. Holmes, Daniel M. Klass, Evan L. Guiney, Martha S. Cyert
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0084060
Abstract: RNA binding proteins (RBPs) are vital to the regulation of mRNA transcripts, and can alter mRNA localization, degradation, translation, and storage. Whi3 was originally identified in a screen for small cell size mutants, and has since been characterized as an RBP. The identification of Whi3-interacting mRNAs involved in mediating cellular responses to stress suggested that Whi3 might be involved in stress-responsive RNA processing. We show that Whi3 localizes to stress granules in response to glucose deprivation or heat shock. The kinetics and pattern of Whi3 localization in response to a range of temperatures were subtly but distinctly different from those of known components of RNA processing granules. Deletion of Whi3 resulted in an increase in the relative abundance of Whi3 target RNAs, either in the presence or absence of heat shock. Increased levels of the CLN3 mRNA in whi3Δ cells may explain their decreased cell size. Another mRNA target of Whi3 encodes the zinc-responsive transcription factor Zap1, suggesting a role for Whi3 in response to zinc stress. Indeed, we found that whi3Δ cells have enhanced sensitivity to zinc toxicity. Together our results suggest an expanded model for Whi3 function: in addition to its role as a regulator of the cell cycle, Whi3 may have a role in stress-dependent RNA processing and responses to a variety of stress conditions.
The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle
Francisco Ferrezuelo, Neus Colomina, Bruce Futcher, Martí Aldea
Genome Biology , 2010, DOI: 10.1186/gb-2010-11-6-r67
Abstract: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our predictions show higher internal coherence and predictive power than previous classifications. Our results support a model whereby SBF and MBF may be differentially activated by Cln3.Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models with more informative experimental data.In the model yeast Saccharomyces cerevisiae, the commitment to a new round of cell division takes place towards the end of the G1 phase of the cell cycle, a process called START [1]. This entails the unfolding of a transcriptional program involving over 200 genes, including some important cell cycle regulators such as the G1 cyclins Cln1 and Cln2, S phase cyclins, a number of cell cycle transcription factors (TFs) as well as many other genes with functions related to DNA metabolism (replication, repair, and so on), budding, spindle pole body duplication, and cell wall synthesis [2,3]. Many of these genes are known or putative targets of two heterodimeric TFs called SBF and MBF. SBF contains the DNA-binding protein Swi4, while MBF contains the Swi4-related DNA-binding protein Mbp1, and both factors contain the regulatory protein Swi6, which binds directly to Swi4 or Mbp1, respective
Recruitment of Cln3 Cyclin to Promoters Controls Cell Cycle Entry via Histone Deacetylase and Other Targets  [PDF]
Hongyin Wang,Lucas B. Carey,Ying Cai,Herman Wijnen,Bruce Futcher
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.1000189
Abstract: In yeast, the G1 cyclin Cln3 promotes cell cycle entry by activating the transcription factor SBF. In mammals, there is a parallel system for cell cycle entry in which cyclin dependent kinase (CDK) activates transcription factor E2F/Dp. Here we show that Cln3 regulates SBF by at least two different pathways, one involving the repressive protein Whi5, and the second involving Stb1. The Rpd3 histone deacetylase complex is also involved. Cln3 binds to SBF at the CLN2 promoter, and removes previously bound Whi5 and histone deacetylase. Adding extra copies of the SBF binding site to the cell delays Start, possibly by titrating Cln3. Since Rpd3 is the yeast ortholog of mammalian HDAC1, there is now a virtually complete analogy between the proteins regulating cell cycle entry in yeast (SBF, Cln3, Whi5 and Stb1, Rpd3) and mammals (E2F, Cyclin D, Rb, HDAC1). The cell may titrate Cln3 molecules against the number of SBF binding sites, and this could be the underlying basis of the size-control mechanism for Start.
Recruitment of Cln3 Cyclin to Promoters Controls Cell Cycle Entry via Histone Deacetylase and Other Targets  [PDF]
Hongyin Wang equal contributor,Lucas B. Carey equal contributor,Ying Cai,Herman Wijnen,Bruce Futcher
PLOS Biology , 2009, DOI: 10.1371/journal.pbio.1000189
Abstract: In yeast, the G1 cyclin Cln3 promotes cell cycle entry by activating the transcription factor SBF. In mammals, there is a parallel system for cell cycle entry in which cyclin dependent kinase (CDK) activates transcription factor E2F/Dp. Here we show that Cln3 regulates SBF by at least two different pathways, one involving the repressive protein Whi5, and the second involving Stb1. The Rpd3 histone deacetylase complex is also involved. Cln3 binds to SBF at the CLN2 promoter, and removes previously bound Whi5 and histone deacetylase. Adding extra copies of the SBF binding site to the cell delays Start, possibly by titrating Cln3. Since Rpd3 is the yeast ortholog of mammalian HDAC1, there is now a virtually complete analogy between the proteins regulating cell cycle entry in yeast (SBF, Cln3, Whi5 and Stb1, Rpd3) and mammals (E2F, Cyclin D, Rb, HDAC1). The cell may titrate Cln3 molecules against the number of SBF binding sites, and this could be the underlying basis of the size-control mechanism for Start.
Xbp1 Directs Global Repression of Budding Yeast Transcription during the Transition to Quiescence and Is Important for the Longevity and Reversibility of the Quiescent State  [PDF]
Shawna Miles,Lihong Li,Jerry Davison,Linda L. Breeden
PLOS Genetics , 2013, DOI: 10.1371/journal.pgen.1003854
Abstract: Pure populations of quiescent yeast can be obtained from stationary phase cultures that have ceased proliferation after exhausting glucose and other carbon sources from their environment. They are uniformly arrested in the G1 phase of the cell cycle, and display very high thermo-tolerance and longevity. We find that G1 arrest is initiated before all the glucose has been scavenged from the media. Maintaining G1 arrest requires transcriptional repression of the G1 cyclin, CLN3, by Xbp1. Xbp1 is induced as glucose is depleted and it is among the most abundant transcripts in quiescent cells. Xbp1 binds and represses CLN3 transcription and in the absence of Xbp1, or with extra copies of CLN3, cells undergo ectopic divisions and produce very small cells. The Rad53-mediated replication stress checkpoint reinforces the arrest and becomes essential when Cln3 is overproduced. The XBP1 transcript also undergoes metabolic oscillations under glucose limitation and we identified many additional transcripts that oscillate out of phase with XBP1 and have Xbp1 binding sites in their promoters. Further global analysis revealed that Xbp1 represses 15% of all yeast genes as they enter the quiescent state and over 500 of these transcripts contain Xbp1 binding sites in their promoters. Xbp1-repressed transcripts are highly enriched for genes involved in the regulation of cell growth, cell division and metabolism. Failure to repress some or all of these targets leads xbp1 cells to enter a permanent arrest or senescence with a shortened lifespan.
Phenotypic Mutation Rates and the Abundance of Abnormal Proteins in Yeast  [PDF]
Martin Willensdorfer ,Reinhard Bürger,Martin A Nowak
PLOS Computational Biology , 2007, DOI: 10.1371/journal.pcbi.0030203
Abstract: Phenotypic mutations are errors that occur during protein synthesis. These errors lead to amino acid substitutions that give rise to abnormal proteins. Experiments suggest that such errors are quite common. We present a model to study the effect of phenotypic mutation rates on the amount of abnormal proteins in a cell. In our model, genes are regulated to synthesize a certain number of functional proteins. During this process, depending on the phenotypic mutation rate, abnormal proteins are generated. We use data on protein length and abundance in Saccharomyces cerevisiae to parametrize our model. We calculate that for small phenotypic mutation rates most abnormal proteins originate from highly expressed genes that are on average nearly twice as large as the average yeast protein. For phenotypic mutation rates much above 5 × 10?4, the error-free synthesis of large proteins is nearly impossible and lowly expressed, very large proteins contribute more and more to the amount of abnormal proteins in a cell. This fact leads to a steep increase of the amount of abnormal proteins for phenotypic mutation rates above 5 × 10?4. Simulations show that this property leads to an upper limit for the phenotypic mutation rate of approximately 2 × 10?3 even if the costs for abnormal proteins are extremely low. We also consider the adaptation of individual proteins. Individual genes/proteins can decrease their phenotypic mutation rate by using preferred codons or by increasing their robustness against amino acid substitutions. We discuss the similarities and differences between the two mechanisms and show that they can only slow down but not prevent the rapid increase of the amount of abnormal proteins. Our work allows us to estimate the phenotypic mutation rate based on data on the fraction of abnormal proteins. For S. cerevisiae, we predict that the value for the phenotypic mutation rate is between 2 × 10?4 and 6 × 10?4.
High-Content, Image-Based Screening for Drug Targets in Yeast  [PDF]
Shinsuke Ohnuki,Satomi Oka,Satoru Nogami,Yoshikazu Ohya
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0010177
Abstract: Drug discovery and development are predicated on elucidation of the potential mechanisms of action and cellular targets of candidate chemical compounds. Recent advances in high-content imaging techniques allow simultaneous analysis of a range of cellular events. In this study, we propose a novel strategy to identify drug targets by combining genetic screening and high-content imaging in yeast.
Functional Expression of Parasite Drug Targets and Their Human Orthologs in Yeast  [PDF]
Elizabeth Bilsland,P?nar Pir,Alex Gutteridge,Alexander Johns,Ross D. King,Stephen G. Oliver
PLOS Neglected Tropical Diseases , 2011, DOI: 10.1371/journal.pntd.0001320
Abstract: Background The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents. Methodology/Principal Findings Using pyrimethamine/dihydrofolate reductase (DHFR) as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi) to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p) expressing yeast (ScDFR1), human (HsDHFR), Schistosoma (SmDHFR), and Trypanosoma (TbDHFR and TcDHFR) DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium (PfDHFR and PvDHFR) DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR (Pfdhfr51I,59R,108N) are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs) and N-myristoyl transferases (NMTs). Conclusions/Significance We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.
Genetics of single-cell protein abundance variation in large yeast populations  [PDF]
Frank W. Albert,Sebastian Treusch,Arthur H. Shockley,Joshua S. Bloom,Leonid Kruglyak
Quantitative Biology , 2013, DOI: 10.1038/nature12904
Abstract: Many DNA sequence variants influence phenotypes by altering gene expression. Our understanding of these variants is limited by sample sizes of current studies and by measurements of mRNA rather than protein abundance. We developed a powerful method for identifying genetic loci that influence protein expression in very large populations of the yeast Saccharomyes cerevisiae. The method measures single-cell protein abundance through the use of green-fluorescent-protein tags. We applied this method to 160 genes and detected many more loci per gene than previous studies. We also observed closer correspondence between loci that influence protein abundance and loci that influence mRNA abundance of a given gene. Most loci cluster at hotspot locations that influence multiple proteins - in some cases, more than half of those examined. The variants that underlie these hotspots have profound effects on the gene regulatory network and provide insights into genetic variation in cell physiology between yeast strains.
Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA  [PDF]
David G. Hendrickson,Daniel J. Hogan,Heather L. McCullough,Jason W. Myers,Daniel Herschlag,James E. Ferrell,Patrick O. Brown
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.1000238
Abstract: MicroRNAs (miRNAs) regulate gene expression posttranscriptionally by interfering with a target mRNA's translation, stability, or both. We sought to dissect the respective contributions of translational inhibition and mRNA decay to microRNA regulation. We identified direct targets of a specific miRNA, miR-124, by virtue of their association with Argonaute proteins, core components of miRNA effector complexes, in response to miR-124 transfection in human tissue culture cells. In parallel, we assessed mRNA levels and obtained translation profiles using a novel global approach to analyze polysomes separated on sucrose gradients. Analysis of translation profiles for ~8,000 genes in these proliferative human cells revealed that basic features of translation are similar to those previously observed in rapidly growing Saccharomyces cerevisiae. For ~600 mRNAs specifically recruited to Argonaute proteins by miR-124, we found reductions in both the mRNA abundance and inferred translation rate spanning a large dynamic range. The changes in mRNA levels of these miR-124 targets were larger than the changes in translation, with average decreases of 35% and 12%, respectively. Further, there was no identifiable subgroup of mRNA targets for which the translational response was dominant. Both ribosome occupancy (the fraction of a given gene's transcripts associated with ribosomes) and ribosome density (the average number of ribosomes bound per unit length of coding sequence) were selectively reduced for hundreds of miR-124 targets by the presence of miR-124. Changes in protein abundance inferred from the observed changes in mRNA abundance and translation profiles closely matched changes directly determined by Western analysis for 11 of 12 proteins, suggesting that our assays captured most of miR-124–mediated regulation. These results suggest that miRNAs inhibit translation initiation or stimulate ribosome drop-off preferentially near the start site and are not consistent with inhibition of polypeptide elongation, or nascent polypeptide degradation contributing significantly to miRNA-mediated regulation in proliferating HEK293T cells. The observation of concordant changes in mRNA abundance and translational rate for hundreds of miR-124 targets is consistent with a functional link between these two regulatory outcomes of miRNA targeting, and the well-documented interrelationship between translation and mRNA decay.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.