Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Neural Tube Defects, Folic Acid and Methylation  [PDF]
Apolline Imbard,Jean-Fran?ois Benoist,Henk J. Blom
International Journal of Environmental Research and Public Health , 2013, DOI: 10.3390/ijerph10094352
Abstract: Neural tube defects (NTDs) are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s) underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects.
Parental ages and levels of DNA methylation in the newborn are correlated
Ronald M Adkins, Fridtjof Thomas, Frances A Tylavsky, Julia Krushkal
BMC Medical Genetics , 2011, DOI: 10.1186/1471-2350-12-47
Abstract: Using a genome-wide survey of 27,578 CpG dinucleotides in a cohort of 168 newborns, we examined the relationship between DNA methylation in newborns and a variety of parental and newborn traits. We found that methylation levels of 144 CpGs belonging to 142 genes were significantly correlated with maternal age. A weaker correlation was observed with paternal age. Among these genes, processes related to cancer were over-represented, as were functions related to neurological regulation, glucose/carbohydrate metabolism, nucleocytoplasmic transport, and transcriptional regulation. CpGs exhibiting gender differences in methylation were overwhelmingly located on the X chromosome, although a small subset of autosomal CpGs were found in genes previously shown to exhibit gender-specific differences in methylation levels.These results indicate that there are differences in CpG methylation levels at birth that are related to parental age and that could influence disease risk in childhood and throughout life.DNA methylation is a normal, heritable epigenetic modification that down-regulates the expression of approximately 1/3 of human genes [1-3] and is key to the allele-specific imprinting of genes [4]. DNA methylation also plays an important role in disease. For example, overall DNA hypomethylation accompanied by gene-specific hypermethylation is a hallmark of cancer [5]. Additionally, shifts in DNA methylation patterns appear to be involved in the normal aging process and increase in disease susceptibility [6]. Indeed, there is ample evidence for characteristic changes in the patterns of DNA methylation with age.The earliest data supporting progressive changes in DNA methylation patterns with age came from global studies of blood that demonstrated lower levels of methylation in older individuals [7] and greater differences in methylation in older monozygotic twins [8]. Christensen et al. [9] examined 217 tissues sampled from a range of non-diseased solid tissues and blood. In
Periconceptional Maternal Folic Acid Use of 400 μg per Day Is Related to Increased Methylation of the IGF2 Gene in the Very Young Child  [PDF]
Régine P. Steegers-Theunissen,Sylvia A. Obermann-Borst,Dennis Kremer,Jan Lindemans,Cissy Siebel,Eric A. Steegers,P. Eline Slagboom,Bastiaan T. Heijmans
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0007845
Abstract: Countries worldwide recommend women planning pregnancy to use daily 400 μg of synthetic folic acid in the periconceptional period to prevent birth defects in children. The underlying mechanisms of this preventive effect are not clear, however, epigenetic modulation of growth processes by folic acid is hypothesized. Here, we investigated whether periconceptional maternal folic acid use and markers of global DNA methylation potential (S-adenosylmethionine and S-adenosylhomocysteine blood levels) in mothers and children affect methylation of the insulin-like growth factor 2 gene differentially methylation region (IGF2 DMR) in the child. Moreover, we tested whether the methylation of the IGF2 DMR was independently associated with birth weight.
Effects of Altered Maternal Folic Acid, Vitamin B12 and Docosahexaenoic Acid on Placental Global DNA Methylation Patterns in Wistar Rats  [PDF]
Asmita Kulkarni,Kamini Dangat,Anvita Kale,Pratiksha Sable,Preeti Chavan-Gautam,Sadhana Joshi
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0017706
Abstract: Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA) levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B12 lowers plasma and placental DHA levels (p<0.05) and reduces global DNA methylation levels (p<0.05). When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.
Placental 11-Beta Hydroxysteroid Dehydrogenase Methylation Is Associated with Newborn Growth and a Measure of Neurobehavioral Outcome  [PDF]
Carmen J. Marsit, Matthew A. Maccani, James F. Padbury, Barry M. Lester
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0033794
Abstract: Background There is growing evidence that the intrauterine environment can impact the neurodevelopment of the fetus through alterations in the functional epigenome of the placenta. In the placenta, the HSD11B2 gene encoding the 11-beta hydroxysteroid dehydrogenase enzyme, which is responsible for the inactivation of maternal cortisol, is regulated by DNA methylation, and has been shown to be susceptible to stressors from the maternal environment. Methodology/Principal Findings We examined the association between DNA methylation of the HSD11B2 promoter region in the placenta of 185 healthy newborn infants and infant and maternal characteristics, as well as the association between this epigenetic variability and newborn neurobehavioral outcome assessed with the NICU Network Neurobehavioral Scales. Controlling for confounders, HSD11B2 methylation extent is greatest in infants with the lowest birthweights (P = 0.04), and this increasing methylation was associated with reduced scores of quality of movement (P = 0.04). Conclusions/Significance These results suggest that factors in the intrauterine environment which contribute to birth outcome may be associated with placental methylation of the HSD11B2 gene and that this epigenetic alteration is in turn associated with a prospectively predictive early neurobehavioral outcome, suggesting in some part a mechanism for the developmental origins of infant neurological health.
Influence of Prenatal Arsenic Exposure and Newborn Sex on Global Methylation of Cord Blood DNA  [PDF]
J. Richard Pilsner, Megan N. Hall, Xinhua Liu, Vesna Ilievski, Vesna Slavkovich, Diane Levy, Pam Factor-Litvak, Mahammad Yunus, Mahfuzar Rahman, Joseph H. Graziano, Mary V. Gamble
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0037147
Abstract: Background An emerging body of evidence indicates that early-life arsenic (As) exposure may influence the trajectory of health outcomes later in life. However, the mechanisms underlying these observations are unknown. Objective The objective of this study was to investigate the influence of prenatal As exposure on global methylation of cord blood DNA in a study of mother/newborn pairs in Matlab, Bangladesh. Design Maternal and cord blood DNA were available from a convenience sample of 101 mother/newborn pairs. Measures of As exposure included maternal urinary As (uAs), maternal blood As (mbAs) and cord blood As (cbAs). Several measures of global DNA methylation were assessed, including the [3H]-methyl-incorporation assay and three Pyrosequencing assays: Alu, LINE-1 and LUMA. Results In the total sample, increasing quartiles of maternal uAs were associated with an increase in covariate-adjusted means of newborn global DNA methylation as measured by the [3H]-methyl-incorporation assay (quartile 1 (Q1) and Q2 vs. Q4; p = 0.06 and 0.04, respectively). Sex-specific linear regression analyses, while not reaching significance level of 0.05, indicated that the associations between As exposures and Alu, LINE-1 and LUMA were positive among male newborns (N = 58) but negative among female newborns (N = 43); tests for sex differences were borderline significant for the association of cbAs and mbAs with Alu (p = 0.05 and 0.09, respectively) and for the association between maternal uAs and LINE-1 (p = 0.07). Sex-specific correlations between maternal urinary creatinine and newborn methyl-incorporation, Alu and LINE-1 were also evident (p<0.05). Conclusions These results suggest that prenatal As exposure is associated with global DNA methylation in cord blood DNA, possibly in a sex-specific manner. Arsenic-induced epigenetic modifications in utero may potentially influence disease outcomes later in life. Additional studies are needed to confirm these findings and to examine the persistence of DNA methylation marks over time.
Increasing Maternal or Post-Weaning Folic Acid Alters Gene Expression and Moderately Changes Behavior in the Offspring  [PDF]
Subit Barua, Kathryn K. Chadman, Salomon Kuizon, Diego Buenaventura, Nathan W. Stapley, Felicia Ruocco, Umme Begum, Sara R. Guariglia, W. Ted Brown, Mohammed A. Junaid
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0101674
Abstract: Background Studies have indicated that altered maternal micronutrients and vitamins influence the development of newborns and altered nutrient exposure throughout the lifetime may have potential health effects and increased susceptibility to chronic diseases. In recent years, folic acid (FA) exposure has significantly increased as a result of mandatory FA fortification and supplementation during pregnancy. Since FA modulates DNA methylation and affects gene expression, we investigated whether the amount of FA ingested during gestation alters gene expression in the newborn cerebral hemisphere, and if the increased exposure to FA during gestation and throughout the lifetime alters behavior in C57BL/6J mice. Methods Dams were fed FA either at 0.4 mg or 4 mg/kg diet throughout the pregnancy and the resulting pups were maintained on the diet throughout experimentation. Newborn pups brain cerebral hemispheres were used for microarray analysis. To confirm alteration of several genes, quantitative RT-PCR (qRT-PCR) and Western blot analyses were performed. In addition, various behavior assessments were conducted on neonatal and adult offspring. Results Results from microarray analysis suggest that the higher dose of FA supplementation during gestation alters the expression of a number of genes in the newborns’ cerebral hemispheres, including many involved in development. QRT-PCR confirmed alterations of nine genes including down-regulation of Cpn2, Htr4, Zfp353, Vgll2 and up-regulation of Xist, Nkx6-3, Leprel1, Nfix, Slc17a7. The alterations in the expression of Slc17a7 and Vgll2 were confirmed at the protein level. Pups exposed to the higher dose of FA exhibited increased ultrasonic vocalizations, greater anxiety-like behavior and hyperactivity. These findings suggest that although FA plays a significant role in mammalian cellular machinery, there may be a loss of benefit from higher amounts of FA. Unregulated high FA supplementation during pregnancy and throughout the life course may have lasting effects, with alterations in brain development resulting in changes in behavior.
No Effect of Folic Acid Supplementation on Global DNA Methylation in Men and Women with Moderately Elevated Homocysteine  [PDF]
Audrey Y. Jung, Yvo Smulders, Petra Verhoef, Frans J. Kok, Henk Blom, Robert M. Kok, Ellen Kampman, Jane Durga
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0024976
Abstract: A global loss of cytosine methylation in DNA has been implicated in a wide range of diseases. There is growing evidence that modifications in DNA methylation can be brought about by altering the intake of methyl donors such as folate. We examined whether long-term daily supplementation with 0.8 mg of folic acid would increase global DNA methylation compared with placebo in individuals with elevated plasma homocysteine. We also investigated if these effects were modified by MTHFR C677T genotype. Two hundred sixteen participants out of 818 subjects who had participated in a randomized double-blind placebo-controlled trial were selected, pre-stratified on MTHFR C677T genotype and matched on age and smoking status. They were allocated to receive either folic acid (0.8 mg/d; n = 105) or placebo treatment (n = 111) for three years. Peripheral blood leukocyte DNA methylation and serum and erythrocyte folate were assessed. Global DNA methylation was measured using liquid chromatography-tandem mass spectrometry and expressed as a percentage of 5-methylcytosines versus the total number of cytosine. There was no difference in global DNA methylation between those randomized to folic acid and those in the placebo group (difference = 0.008, 95%CI = ?0.05,0.07, P = 0.79). There was also no difference between treatment groups when we stratified for MTHFR C677T genotype (CC, n = 76; CT, n = 70; TT, n = 70), baseline erythrocyte folate status or baseline DNA methylation levels. In moderately hyperhomocysteinemic men and women, long-term folic acid supplementation does not increase global DNA methylation in peripheral blood leukocytes. ClinicalTrials.gov NCT00110604
Homocysteine, an indicator of methylation pathway alternation in Down syndrome and its regulation by folic acid therapy  [cached]
Hala M El-Gendy,Hala M Mokhtar
Journal of Research in Medical Sciences , 2007,
Abstract: BACKGROUND: Down syndrome (DS) is a complex genetic disease. Some clinical features of patients with this syndrome could be related to functional folate deficiency. The purpose of this study was to evaluate the total homocysteine (T-Hcy) metabolism in DS children and to determine whether the supplementation with folic acid therapy would shift the genetically induced metabolic imbalance or not. METHODS: Thirty-five infants with DS, with the mean age of 17.66 ± 12.24 months were included in this study. They were selected from those attending the Genetic Outpatients Clinic in Children hospital. RESULTS: Our results revealed that Down syndrome children had a significant decrease in serum plasma T-Hcy level after the treatment with folic acid [11.79 ± 0.92 vs. 14.41 ± 4.93 μmol/L]. A significant negative correlation was found between T-Hcy and folic acid serum levels [r = -0.112; P<0.05].CONCLUSIONS: We concluded that the regulation of methylation pathways in Down syndrome patients becomes important in the light of possible normalization of the metabolic imbalance and the detection of increased sensitivity to therapeutic interventions. KEY WORDS: Down syndrome, hyperhomocysteine, folic acid, vitamin B-12.
Genomic DNA Methylation Changes in Response to Folic Acid Supplementation in a Population-Based Intervention Study among Women of Reproductive Age  [PDF]
Krista S. Crider, Eoin P. Quinlivan, Robert J. Berry, Ling Hao, Zhu Li, David Maneval, Thomas P. Yang, Sonja A. Rasmussen, Quanhe Yang, Jiang-Hui Zhu, Dale J. Hu, Lynn B. Bailey
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0028144
Abstract: Folate is a source of one-carbons necessary for DNA methylation, a critical epigenetic modification necessary for genomic structure and function. The use of supplemental folic acid is widespread however; the potential influence on DNA methylation is unclear. We measured global DNA methylation using DNA extracted from samples from a population-based, double-blind randomized trial of folic acid supplementation (100, 400, 4000 μg per day) taken for 6 months; including a 3 month post-supplementation sample. We observed no changes in global DNA methylation in response to up to 4,000 μg/day for 6 months supplementation in DNA extracted from uncoagulated blood (approximates circulating blood). However, when DNA methylation was determined in coagulated samples from the same individuals at the same time, significant time, dose, and MTHFR genotype-dependent changes were observed. The baseline level of DNA methylation was the same for uncoagulated and coagulated samples; marked differences between sample types were observed only after intervention. In DNA from coagulated blood, DNA methylation decreased (?14%; P<0.001) after 1 month of supplementation and 3 months after supplement withdrawal, methylation decreased an additional 23% (P<0.001) with significant variation among individuals (max+17%; min-94%). Decreases in methylation of ≥25% (vs. <25%) after discontinuation of supplementation were strongly associated with genotype: MTHFR CC vs. TT (adjusted odds ratio [aOR] 12.9, 95%CI 6.4, 26.0). The unexpected difference in DNA methylation between DNA extracted from coagulated and uncoagulated samples in response to folic acid supplementation is an important finding for evaluating use of folic acid and investigating the potential effects of folic acid supplementation on coagulation.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.