oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
SYD-1C, UNC-40 (DCC) and SAX-3 (Robo) Function Interdependently to Promote Axon Guidance by Regulating the MIG-2 GTPase  [PDF]
Yan Xu?,Hidenori Taru?,Yishi Jin?,Christopher C. Quinn
PLOS Genetics , 2015, DOI: 10.1371/journal.pgen.1005185
Abstract: During development, axons must integrate directional information encoded by multiple guidance cues and their receptors. Axon guidance receptors, such as UNC-40 (DCC) and SAX-3 (Robo), can function individually or combinatorially with other guidance receptors to regulate downstream effectors. However, little is known about the molecular mechanisms that mediate combinatorial guidance receptor signaling. Here, we show that UNC-40, SAX-3 and the SYD-1 RhoGAP-like protein function interdependently to regulate the MIG-2 (Rac) GTPase in the HSN axon of C. elegans. We find that SYD-1 mediates an UNC-6 (netrin) independent UNC-40 activity to promote ventral axon guidance. Genetic analysis suggests that SYD-1 function in axon guidance requires both UNC-40 and SAX-3 activity. Moreover, the cytoplasmic domains of UNC-40 and SAX-3 bind to SYD-1 and SYD-1 binds to and negatively regulates the MIG-2 (Rac) GTPase. We also find that the function of SYD-1 in axon guidance is mediated by its phylogenetically conserved C isoform, indicating that the role of SYD-1 in guidance is distinct from its previously described roles in synaptogenesis and axonal specification. Our observations reveal a molecular mechanism that can allow two guidance receptors to function interdependently to regulate a common downstream effector, providing a potential means for the integration of guidance signals.
Extracellular Matrix Regulates UNC-6 (Netrin) Axon Guidance by Controlling the Direction of Intracellular UNC-40 (DCC) Outgrowth Activity  [PDF]
Yong Yang, Won Suk Lee, Xia Tang, William G. Wadsworth
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0097258
Abstract: How extracellular molecules influence the direction of axon guidance is poorly understood. The HSN axon of Caenorhabditis elegans is guided towards a ventral source of secreted UNC-6 (netrin). The axon’s outgrowth response to UNC-6 is mediated by the UNC-40 (DCC) receptor. We have proposed that in response to the UNC-6 molecule the direction of UNC-40-mediated axon outgrowth is stochastically determined. The direction of guidance is controlled by asymmetric cues, including the gradient of UNC-6, that regulate the probability that UNC-40-mediated axon outgrowth is directed on average, over time, in a specific direction. Here we provide genetic evidence that a specialized extracellular matrix, which lies ventral to the HSN cell body, regulates the probability that UNC-40-mediated axon outgrowth will be directed ventrally towards the matrix. We show that mutations that disrupt the function of proteins associated with this matrix, UNC-52 (perlecan), UNC-112 (kindlin), VAB-19 (Kank), and UNC-97 (PINCH), decrease the probability of UNC-40-mediated axon outgrowth in the ventral direction, while increasing the probability of outgrowth in the anterior and posterior directions. Other results suggest that INA-1 (α integrin) and MIG-15 (NIK kinase) signaling mediate the response in HSN. Although the AVM axon also migrates through this matrix, the mutations have little effect on the direction of AVM axon outgrowth, indicating that responses to the matrix are cell-specific. Together, these results suggest that an extracellular matrix can regulate the direction of UNC-6 guidance by increasing the probability that UNC-40-mediated axon outgrowth activity will be oriented in a specific direction.
RACK-1 Acts with Rac GTPase Signaling and UNC-115/abLIM in Caenorhabditis elegans Axon Pathfinding and Cell Migration  [PDF]
Rafael S. Demarco,Erik A. Lundquist
PLOS Genetics , 2010, DOI: 10.1371/journal.pgen.1001215
Abstract: Migrating cells and growth cones extend lamellipodial and filopodial protrusions that are required for outgrowth and guidance. The mechanisms of cytoskeletal regulation that underlie cell and growth cone migration are of much interest to developmental biologists. Previous studies have shown that the Arp2/3 complex and UNC-115/abLIM act redundantly to mediate growth cone lamellipodia and filopodia formation and axon pathfinding. While much is known about the regulation of Arp2/3, less is known about regulators of UNC-115/abLIM. Here we show that the Caenorhabditis elegans counterpart of the Receptor for Activated C Kinase (RACK-1) interacts physically with the actin-binding protein UNC-115/abLIM and that RACK-1 is required for axon pathfinding. Genetic interactions indicate that RACK-1 acts cell-autonomously in the UNC-115/abLIM pathway in axon pathfinding and lamellipodia and filopodia formation, downstream of the CED-10/Rac GTPase and in parallel to MIG-2/RhoG. Furthermore, we show that RACK-1 is involved in migration of the gonadal distal tip cells and that the signaling pathways involved in this process might be distinct from those involved in axon pathfinding. In sum, these studies pinpoint RACK-1 as a component of a novel signaling pathway involving Rac GTPases and UNC-115/abLIM and suggest that RACK-1 might be involved in the regulation of the actin cytoskeleton and lamellipodia and filopodia formation in migrating cells and growth cones.
Glypican Is a Modulator of Netrin-Mediated Axon Guidance  [PDF]
Cassandra R. Blanchette?,Paola N. Perrat?,Andrea Thackeray?,Claire Y. Bénard
PLOS Biology , 2015, DOI: 10.1371/journal.pbio.1002183
Abstract: Netrin is a key axon guidance cue that orients axon growth during neural circuit formation. However, the mechanisms regulating netrin and its receptors in the extracellular milieu are largely unknown. Here we demonstrate that in Caenorhabditis elegans, LON-2/glypican, a heparan sulfate proteoglycan, modulates UNC-6/netrin signaling and may do this through interactions with the UNC-40/DCC receptor. We show that developing axons misorient in the absence of LON-2/glypican when the SLT-1/slit guidance pathway is compromised and that LON-2/glypican functions in both the attractive and repulsive UNC-6/netrin pathways. We find that the core LON-2/glypican protein, lacking its heparan sulfate chains, and secreted forms of LON-2/glypican are functional in axon guidance. We also find that LON-2/glypican functions from the epidermal substrate cells to guide axons, and we provide evidence that LON-2/glypican associates with UNC-40/DCC receptor–expressing cells. We propose that LON-2/glypican acts as a modulator of UNC-40/DCC-mediated guidance to fine-tune axonal responses to UNC-6/netrin signals during migration.
The Arp2/3 complex, UNC-115/abLIM, and UNC-34/Enabled regulate axon guidance and growth cone filopodia formation in Caenorhabditis elegans
Adam D Norris, Jamie O Dyer, Erik A Lundquist
Neural Development , 2009, DOI: 10.1186/1749-8104-4-38
Abstract: Here we show that mutations in genes encoding the Arp2/3 complex (arx genes) caused defects in axon guidance. Analysis of developing growth cones in vivo showed that arx mutants displayed defects in filopodia and reduced growth cone size. Time-lapse analysis of growth cones in living animals indicated that arx mutants affected the rate of growth cone filopodia formation but not filopodia stability or length. Two other actin modulatory proteins, UNC-115/abLIM and UNC-34/Enabled, that had been shown previously to affect axon guidance had overlapping roles with Arp2/3 in axon guidance and also affected the rate of filopodia initiation but not stability or length.Our results indicate that the Arp2/3 complex is required cell-autonomously for axon guidance and growth cone filopodia initiation. Furthermore, they show that two other actin-binding proteins, UNC-115/abLIM and UNC-34/Enabled, also control growth cone filopodia formation, possibly in parallel to Arp2/3. These studies indicate that, in vivo, multiple actin modulatory pathways including the Arp2/3 complex contribute to growth cone filopodia formation during growth cone outgrowth.The growth cone of a developing axon senses and responds to extracellular cues, resulting in the migration of the growth cone and thus axon to its correct target region in the nervous system [1,2]. Growth cones display dynamic, actin-based lamellipodial protrusions ringed by filopodia that together guide the growth cone to its target [3-5]. The Arp2/3 complex is a seven-member protein complex that nucleates actin filaments from the sides of pre-existing actin filaments. In cultured cells, the Arp2/3 complex is necessary to form the network of branched actin filaments underlying lamellipodia [6-8].The Arp2/3 complex has been implicated in axon pathfinding in vivo. In Drosophila, the Arp2/3 complex and its regulators WAVE/Scar and Kette are required for proper axon pathfinding [9], and in Caenorhabditis elegans, the Arp2/3 regulators WAVE-1
The Rac GTP Exchange Factor TIAM-1 Acts with CDC-42 and the Guidance Receptor UNC-40/DCC in Neuronal Protrusion and Axon Guidance  [PDF]
Rafael S. Demarco,Eric C. Struckhoff,Erik A. Lundquist
PLOS Genetics , 2012, DOI: 10.1371/journal.pgen.1002665
Abstract: The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions.
The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans  [cached]
Su Cheng-Wen,Tharin Suzanne,Jin Yishi,Wightman Bruce
Journal of Biology , 2006, DOI: 10.1186/jbiol39
Abstract: Background The nematode Caenorhabditis elegans has been used extensively to identify the genetic requirements for proper nervous system development and function. Key to this process is the direction of vesicles to the growing axons and dendrites, which is required for growth-cone extension and synapse formation in the developing neurons. The contribution and mechanism of membrane traffic in neuronal development are not fully understood, however. Results We show that the C. elegans gene unc-69 is required for axon outgrowth, guidance, fasciculation and normal presynaptic organization. We identify UNC-69 as an evolutionarily conserved 108-amino-acid protein with a short coiled-coil domain. UNC-69 interacts physically with UNC-76, mutations in which produce similar defects to loss of unc-69 function. In addition, a weak reduction-of-function allele, unc-69(ju69), preferentially causes mislocalization of the synaptic vesicle marker synaptobrevin. UNC-69 and UNC-76 colocalize as puncta in neuronal processes and cooperate to regulate axon extension and synapse formation. The chicken UNC-69 homolog is highly expressed in the developing central nervous system, and its inactivation by RNA interference leads to axon guidance defects. Conclusion We have identified a novel protein complex, composed of UNC-69 and UNC-76, which promotes axonal growth and normal presynaptic organization in C. elegans. As both proteins are conserved through evolution, we suggest that the mammalian homologs of UNC-69 and UNC-76 (SCOCO and FEZ, respectively) may function similarly.
The axon reflex  [PDF]
Yaprak M
Neuroanatomy , 2008,
Abstract: This brief review focuses on historical development of the knowledge about the axon reflex and on investigationsin which this reflex used to link pathophysiologic processes to symptoms of the disease state through theorganization of neuronal networks. Unlike spinal reflexes, there is neither an integration center nor any synapsein the arc of the axon reflex. Receptor and effector of axon reflex are at the peripheral ends of an afferent neuronTo set the basic knowledge and major achievements we first provide a brief account of the understanding ofthe spinal cord in conventional reflexes. Next, recent work on specifically axon reflex and its involvement inprocesses such as pain, itch, bronchial asthma and dermal circulation is reviewed.
The Caenorhabditis elegans Eph Receptor Activates NCK and N-WASP, and Inhibits Ena/VASP to Regulate Growth Cone Dynamics during Axon Guidance  [PDF]
Ahmed M. Mohamed,Jeffrey R. Boudreau,Fabian P. S. Yu,Jun Liu,Ian D. Chin-Sang
PLOS Genetics , 2012, DOI: 10.1371/journal.pgen.1002513
Abstract: The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity.
Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3
Jakub Westholm, Niklas Nordberg, Eva Murén, Adam Ameur, Jan Komorowski, Hans Ronne
BMC Genomics , 2008, DOI: 10.1186/1471-2164-9-601
Abstract: Mig1 and Mig2 repress a largely overlapping set of genes on 2% glucose. Genes that are upregulated in a mig1 mig2 double mutant were grouped according to the contribution of Mig2. Most of them show partially redundant repression, with Mig1 being the major repressor, but some genes show complete redundancy, and some are repressed only by Mig1. Several redundantly repressed genes are involved in phosphate metabolism. The promoters of these genes are enriched for Pho4 sites, a novel GGGAGG motif, and a variant Mig1 site which is absent from genes repressed only by Mig1. Genes repressed only by Mig1 on 2% glucose include the hexose transporter gene HXT4, but Mig2 contributes to HXT4 repression on 10% glucose. HXT6 is one of the few genes that are more strongly repressed by Mig2. Mig3 does not seem to overlap in function with Mig1 and Mig2. Instead, Mig3 downregulates the SIR2 gene encoding a histone deacetylase involved in gene silencing and the control of aging.Mig2 fine-tunes glucose repression by targeting a subset of the Mig1-repressed genes, and by responding to higher glucose concentrations. Mig3 does not target the same genes as Mig1 and Mig2, but instead downregulates the SIR2 gene.Gene regulatory networks control gene expression in response to both internal conditions (e.g. cell type, age) and external signals (e.g. nutrients, stress, signaling molecules). The use of combinations of transcription factors in regulatory networks greatly enhances the number of possible gene expression patterns, and enables cells to fine-tune their response to different conditions. Combinatorial aspects of gene regulation have been studied both on a whole-network scale [1-6] and for specific parts of regulatory networks [7-9]. In the present study, we examine combinatorial gene regulation during glucose repression in the budding yeast Saccharomyces cerevisiae.Glucose is the preferred carbon source for S. cerevisiae, which metabolizes glucose by a purely glycolytic process (fermenta
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.