oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
The cessation and detoxification effect of tea filters on cigarette smoke
JingQi Yan,XiaoJing Di,CaiYi Liu,HuiMin Zhang,XiouQin Huang,JunJing Zhang,Yan Zhao,LongZe Zhang,YanZhong Chang,YongLin Liang,Ran Tao,BaoLu Zhao
Science China Life Sciences , 2010, DOI: 10.1007/s11427-010-0097-1
Abstract: To treat tobacco addiction, a tea filter was developed and studied for smoking cessation. This work reports the smoking cessation effect of tea when it was used as a component of cigarette filters. In one trial it was found that after using the tea filters for 2 months, the volunteer smokers decreased their cigarette consumption by 56.5%, and 31.7% of them stopped smoking. This work identified a new method and material, tea filter and theanine, which inhibit tobacco and nicotine addiction and provide an effective strategy for treating tobacco addiction.
Different regulation of cigarette smoke induced inflammation in upper versus lower airways
Wouter Huvenne, Claudina A Pérez-Novo, Lara Derycke, Natalie De Ruyck, Olga Krysko, Tania Maes, Nele Pauwels, Lander Robays, Ken R Bracke, Guy Joos, Guy Brusselle, Claus Bachert
Respiratory Research , 2010, DOI: 10.1186/1465-9921-11-100
Abstract: C57BL/6 mice were whole-body exposed to mainstream CS or air, for 2, 4 and 24 weeks. Bronchoalveolar lavage fluid (BAL) was obtained and tissue cryosections from nasal turbinates were stained for neutrophils and T cells. Furthermore, we evaluated GCP-2, KC, MCP-1, MIP-3α, RORc, IL-17, FoxP3, and TGF-β1 in nasal turbinates and lungs by RT-PCR.In both upper and lower airways, subacute CS-exposure induced the expression of GCP-2, MCP-1, MIP-3α and resulted in a neutrophilic influx. However, after chronic CS-exposure, there was a significant downregulation of inflammation in the upper airways, while on the contrary, lower airway inflammation remained present. Whereas nasal FoxP3 mRNA levels already increased after 2 weeks, lung FoxP3 mRNA increased only after 4 weeks, suggesting that mechanisms to suppress inflammation occur earlier and are more efficient in nose than in lungs.Altogether, these data demonstrate that CS induced inflammation may be differently regulated in the upper versus lower airways in mice. Furthermore, these data may help to identify new therapeutic targets in this disease model.Tobacco smoking can induce bronchial inflammation and structural changes, and is one of the major causes of Chronic Obstructive Pulmonary Disease (COPD), which is characterized by a slowly progressive development of airflow limitation that is not fully reversible [1]. There is growing evidence that the disease process is not confined to the lower airways, which is perhaps not surprising given the fact that the entire airway is exposed to tobacco smoke. Epidemiological data suggest that 75% of the COPD patients have concomitant nasal symptoms and more than 1/3 of patients with sinusitis also have lower airway symptoms of asthma or COPD [2]. These arguments stress the significant sinonasal inflammation in patients with lower airway complaints, beyond the scope of allergic inflammation [3-5].We know from human and murine research that both inflammatory and structural cells acti
Alterations in Skeletal Muscle Cell Homeostasis in a Mouse Model of Cigarette Smoke Exposure  [PDF]
Marc-André Caron, Mathieu C. Morissette, Marie-Eve Thériault, Jake K. Nikota, Martin R. St?mpfli, Richard Debigaré
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0066433
Abstract: Background Skeletal muscle dysfunction is common in chronic obstructive pulmonary disease (COPD), a disease mainly caused by chronic cigarette use. An important proportion of patients with COPD have decreased muscle mass, suggesting that chronic cigarette smoke exposure may interfere with skeletal muscle cellular equilibrium. Therefore, the main objective of this study was to investigate the kinetic of the effects that cigarette smoke exposure has on skeletal muscle cell signaling involved in protein homeostasis and to assess the reversibility of these effects. Methods A mouse model of cigarette smoke exposure was used to assess skeletal muscle changes. BALB/c mice were exposed to cigarette smoke or room air for 8 weeks, 24 weeks or 24 weeks followed by 60 days of cessation. The gastrocnemius and soleus muscles were collected and the activation state of key mediators involved in protein synthesis and degradation was assessed. Results Gastrocnemius and soleus were smaller in mice exposed to cigarette smoke for 8 and 24 weeks compared to room air exposed animals. Pro-degradation proteins were induced at the mRNA level after 8 and 24 weeks. Twenty-four weeks of cigarette smoke exposure induced pro-degradation proteins and reduced Akt phosphorylation and glycogen synthase kinase-3β quantity. A 60-day smoking cessation period reversed the cell signaling alterations induced by cigarette smoke exposure. Conclusions Repeated cigarette smoke exposure induces reversible muscle signaling alterations that are dependent on the duration of the cigarette smoke exposure. These results highlights a beneficial aspect associated with smoking cessation.
Continuous and Discontinuous Cigarette Smoke Exposure Differentially Affects Protective Th1 Immunity against Pulmonary Tuberculosis  [PDF]
Christopher R. Shaler, Carly N. Horvath, Sarah McCormick, Mangalakumari Jeyanathan, Amandeep Khera, Anna Zganiacz, Joanna Kasinska, Martin R. Stampfli, Zhou Xing
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0059185
Abstract: Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death due to a bacterial pathogen. Emerging epidemiologic evidence suggests that the leading risk factor associated with TB mortality is cigarette smoke exposure. Despite this, it remains poorly understood what is the effect of cigarette smoke exposure on anti-TB immunity and whether its potential detrimental effect can be reversed by cigarette smoking cessation. In our current study, we have investigated the impact of both continuous and discontinuous cigarette smoke exposure on the development of anti-mycobacterial type 1 immunity in murine models. We find that while continuous cigarette smoke exposure severely impairs type 1 immunity in the lung, a short-term smoking cessation allows rapid restoration of anti-mycobacterial immunity. The ability of continuous cigarette smoke exposure to dampen type 1 protective immunity is attributed locally to its affects on innate immune cells in the lung. Continuous cigarette smoke exposure locally, by not systemically, impairs APC accumulation and their production of TNF, IL-12, and RANTES, blunts the recruitment of CD4+IFN-γ+ T cells to the lung, and weakens the formation of granuloma. On the other hand, smoking cessation was found to help restore type 1 immunity by rapidly improving the functionality of lung APCs, enhancing the recruitment of CD4+IFN-γ+ T cells to the lung, and promoting the formation of granuloma. Our study for the first time demonstrates that continuous, but not discontinuous, cigarette smoke exposure severely impedes the lung expression of anti-TB Th1 immunity via inhibiting innate immune activation and lung T cell recruitment. Our findings thus suggest cigarette smoking cessation to be beneficial to the control of pulmonary TB.
Cigarette smoke impairs granulosa cell proliferation and oocyte growth after exposure cessation in young Swiss mice: an experimental study  [cached]
Paix?o Larissa LO,Gaspar-Reis Rejane P,Gonzalez Gabrielle PL,Santos Aline S
Journal of Ovarian Research , 2012, DOI: 10.1186/1757-2215-5-25
Abstract: Background Cigarette smoke is associated with decreased female fertility, causing damage to ovarian function and disturbing follicle development. However, the effects of cigarette toxicants on ovarian function depend on duration and intensity of exposure. The aim of this study was to assess the effects of brief, intense exposure to tobacco smoke on granulosa cell number, oocyte growth, and follicle size during puberty in female Swiss mice. Methods Ten female Swiss mice aged 35 days were exposed to tobacco smoke from 3R4F reference research cigarettes. They were exposed to an automatic smoking machine 8 h/day, 7 days/week for 15 days. Ten age-matched controls were kept in a different room and exposed to ambient air. At the end of 15 days, five mice in each group were euthanized and the ovaries were analyzed for follicular morphometry and granulosa cell count. The remaining animals were kept for an additional 30 days for further analysis as an ex-smoker group and control group. Comparison between the two groups was evaluated by the Student’s t-test or a two-way ANOVA followed by Bonferroni post-test was applied for multiple comparisons. Results We found that cigarette smoke impaired antral follicular growth even after exposure cessation (p < 0.001). Both smoking and ex-smoking groups exhibited similar follicle diameter. However, at the same follicular stage, the number of granulosa cells was smaller in the ex-smoking group compared to smoking animals (p < 0.001). This was associated with increased oocyte diameter in ex-smoking animals compared to smoking animals (p < 0.01). Conclusions The negative effects of cigarette smoking seem to last even after exposure has been interrupted. Moreover, brief exposure during puberty may induce silent oocyte disruption, which could in turn lead to decreased fecundity rates.
Persistence of Th17/Tc17 Cell Expression upon Smoking Cessation in Mice with Cigarette Smoke-Induced Emphysema  [PDF]
Min-Chao Duan,Hai-Juan Tang,Xiao-Ning Zhong,Ying Huang
Journal of Immunology Research , 2013, DOI: 10.1155/2013/350727
Abstract: Th17 and Tc17 cells may be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), a disease caused predominantly by cigarette smoking. Smoking cessation is the only intervention in the management of COPD. However, even after cessation, the airway inflammation may be present. In the current study, mice were exposed to room air or cigarette smoke for 24 weeks or 24 weeks followed by 12 weeks of cessation. Morphological changes were evaluated by mean linear intercepts (Lm) and destructive index (DI). The frequencies of CD8+IL-17+(Tc17) and CD4+IL-17+(Th17) cells, the mRNA levels of ROR gamma and IL-17, and the levels of IL-8, TNF-alpha, and IFN-gamma in lungs or bronchoalveolar lavage fluid of mice were assayed. Here we demonstrated that alveolar enlargement and destruction induced by cigarette smoke exposure were irreversible and that cigarette smokeenhanced these T-cell subsets, and related cytokines were not significantly reduced after smoking cessation. In addition, the frequencies of Th17 and Tc17 cells in lungs of smoke-exposed mice and cessation mice were positively correlated with emphysematous lesions. More important, the frequencies of Tc17 cells were much higher than Th17 cells, and there was a significantly positive correlation between Th17 and Tc17. These results suggested that Th17/Tc17 infiltration in lungs may play a critical role in sustaining lung inflammation in emphysema. Blocking the abnormally increased numbers of Tc17 and Th17 cells may be a reasonable therapeutic strategy for emphysema. 1. Introduction Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation due to airway obstruction and emphysematous destruction [1]. Smoking is the most important etiological factor in the development of airway inflammation in COPD [1]. Until now, smoking cessation is regarded as the most important intervention in reducing the progression of COPD [2]. However, in those who develop COPD this inflammatory response persists after smoking cessation, suggesting an abnormal regulation mechanism similar to those occurring in autoimmune disorders. COPD shares some features with autoimmune diseases [3–5]. Th1/Tc1 cells contribute principally, but not exclusively, to the pathogenesis of COPD. Th17 cells are now defined as a separate T-cell subset distinct from the Th1 and Th2 cells, with the expression of distinctive transcription factor ROR-ct (RAR-related orphan nuclear receptor ct in mice; RORC, RAR-related orphan nuclear receptor C in humans). IL-17A, IL-17F, IL-21, and IL-22 are secreted by and
Cigarette Smoke Promotes Drug Resistance and Expansion of Cancer Stem Cell-Like Side Population  [PDF]
Yi An, Alan Kiang, Jay Patrick Lopez, Selena Z. Kuo, Michael Andrew Yu, Eric L. Abhold, Jocelyn S. Chen, Jessica Wang-Rodriguez, Weg M. Ongkeko
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0047919
Abstract: It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC) on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP), which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.
Cigarette smoke exposure facilitates allergic sensitization in mice
Katrien B Moerloose, Lander J Robays, Tania Maes, Guy G Brusselle, Kurt G Tournoy, Guy F Joos
Respiratory Research , 2006, DOI: 10.1186/1465-9921-7-49
Abstract: The aim of this study was to determine if cigarette smoke exposure could facilitate primary allergic sensitization.BALB/c mice were exposed to aerosolized ovalbumin (OVA) combined with air or tobacco smoke (4 exposures/day) daily for three weeks. Serology, lung cytopathology, cytokine profiles in bronchoalveolar lavage fluid (BALF) and on mediastinal lymph node cultures as well as lung function tests were performed after the last exposure. The natural history and the immune memory of allergic sensitization were studied with in vivo recall experiments.Exposure to OVA induced a small increase in OVA-specific serum IgE as compared with exposure to PBS (P < 0.05), while no inflammatory reaction was observed in the airways. Exposure to cigarette smoke did not induce IgE, but was characterized by a small but significant neutrophilic inflammatory reaction. Combining OVA with cigarette smoke not only induced a significant increase in OVA-specific IgE but also a distinct eosinophil and goblet cell enriched airway inflammation albeit that airway hyperresponsiveness was not evidenced. FACS analysis showed in these mice increases in dendritic cells (DC) and CD4+ T-lymphocytes along with a marked increase in IL-5 measured in the supernatant of lymph node cell cultures. Immune memory experiments evidenced the transient nature of these phenomena.In this study we show that mainstream cigarette smoke temporary disrupts the normal lung homeostatic tolerance to innocuous inhaled allergens, thereby inducing primary allergic sensitization. This is characterized not only by the development of persistent IgE, but also by the emergence of an eosinophil rich pulmonary inflammatory reaction.Cigarette smoke can trigger acute symptoms in patients with asthma, and exposure to cigarette smoke is strongly correlated with asthma severity [1-3]. Animal models support these findings [4,5]. Recent evidence suggests that active smoking is a risk factor for the onset of adult asthma [6], but whether th
Respiratory Syncytial Virus Infections Enhance Cigarette Smoke Induced COPD in Mice  [PDF]
Robert F. Foronjy, Abdoulaye J. Dabo, Clifford C. Taggart, Sinead Weldon, Patrick Geraghty
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0090567
Abstract: Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1α, IL-17, IFN-γ, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.
Aging does not Enhance Experimental Cigarette Smoke-Induced COPD in the Mouse  [PDF]
Steven Zhou, Joanne L. Wright, Joseph Liu, Don D. Sin, Andrew Churg
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0071410
Abstract: It has been proposed that the development of COPD is driven by premature aging/premature senescence of lung parenchyma cells. There are data suggesting that old mice develop a greater inflammatory and lower anti-oxidant response after cigarette smoke compared to young mice, but whether these differences actually translate into greater levels of disease is unknown. We exposed C57Bl/6 female mice to daily cigarette smoke for 6 months starting at age 3 months (Ayoung@) or age 12 months (Aold@), with air-exposed controls. There were no differences in measures of airspace size between the two control groups and cigarette smoke induced exactly the same amount of emphysema in young and old. The severity of smoke-induced small airway remodeling using various measures was identical in both groups. Smoke increased numbers of tissue macrophages and neutrophils and levels of 8-hydroxyguanosine, a marker of oxidant damage, but there were no differences between young and old. Gene expression studies using laser capture microdissected airways and parenchyma overall showed a trend to lower levels in older animals and a somewhat lesser response to cigarette smoke in both airways and parenchyma but the differences were usually not marked. Telomere length was greatest in young control mice and was decreased by both smoking and age. The senescence marker p21Waf1 was equally upregulated by smoke in young and old, but p16INK4a, another senescence marker, was not upregulated at all. We conclude, in this model, animal age does not affect the development of emphysema and small airway remodeling.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.