oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
PEM Fuel Cells - Fundamentals, Modeling and Applications
Maher A.R. Sadiq Al-Baghdadi
International Journal of Energy and Environment , 2013,
Abstract: Part I: Fundamentals Chapter 1: Introduction. Chapter 2: PEM fuel cell thermodynamics, electrochemistry, and performance. Chapter 3: PEM fuel cell components. Chapter 4: PEM fuel cell failure modes. Part II: Modeling and Simulation Chapter 5: PEM fuel cell models based on semi-empirical simulation. Chapter 6: PEM fuel cell models based on computational fluid dynamics. Part III: Applications Chapter 7: PEM fuel cell system design and applications.
Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters  [PDF]
Markus Gr?tsch,Michael Mangold,Achim Kienle
Energies , 2009, DOI: 10.3390/en2010071
Abstract: The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable.
Experimental and Numerical Study on the Cold Start Performance of a Single PEM Fuel Cell  [PDF]
Calvin H. Li,G. P. Peterson
Advances in Mechanical Engineering , 2010, DOI: 10.1155/2010/403816
Abstract: A combined experimental and analytical investigation of single proton exchange membrane (PEM) fuel cells, during cold start, has been conducted. The temperature influence on the performance of a single PEM fuel cell and the cold start failure of the PEM fuel cell was evaluated experimentally to determine the failure mechanisms and performance. The voltage, current, and power characteristics were investigated as a function of the load, the hydrogen fuel flow rate, and the cell temperature. The characteristics of cold start for a single PEM fuel cell were analyzed, and the various failure mechanisms were explored and characterized. In an effort to better understand the operational behavior and failure modes, a numerical simulation was also developed. The results of this analysis were then compared with the previously obtained experimental results and confirmed the accuracy of the failure mechanisms identified.
A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell  [PDF]
Maher A.R. Sadiq Al-Baghdadi
International Journal of Energy and Environment , 2011,
Abstract: The need for improved lifetime of air-breathing proton exchange membrane (PEM) fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a planar ambient air-breathing, proton exchange membrane fuel cell has been developed and used to study the effects of ambient conditions on the temperature distribution, displacement, deformation, and stresses inside the cell. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. A unique feature of the present model is to incorporate the effect of mechanical, hygro and thermal stresses into actual three-dimensional fuel cell model. The results show that the non-uniform distribution of stresses, caused by the temperature gradient in the cell, induces localized bending stresses, which can contribute to delaminating between the membrane and the gas diffusion layers. The non-uniform distribution of stresses can also contribute to delaminating between the gas diffusion layers and the current collectors. These stresses may explain the occurrence of cracks and pinholes in the fuel cells components under steady–state loading during regular cell operation, especially in the high loading conditions. The results showed that the ambient conditions (ambient temperature and
An Innovative Hybrid 3D Analytic-Numerical Approach for System Level Modelling of PEM Fuel Cells  [PDF]
Gregor Tav?ar,Toma? Katra?nik
Energies , 2013, DOI: 10.3390/en6105426
Abstract: The PEM fuel cell model presented in this paper is based on modelling species transport and coupling electrochemical reactions to species transport in an innovative way. Species transport is modelled by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the gas-flow and coupling consecutive 2D solutions by means of a 1D numerical gas-flow model. The 2D solution is devised on a jigsaw puzzle of multiple coupled domains which enables the modelling of parallel straight channel fuel cells with realistic geometries. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. A hybrid 3D analytic-numerical fuel cell model of a laboratory test fuel cell is presented and evaluated against a professional 3D computational fluid dynamic (CFD) simulation tool. This comparative evaluation shows very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at computational times short enough to be suitable for system level simulations. This computational efficiency is owed to the semi-analytic nature of its species transport modelling and to the efficient computational coupling of electrochemical kinetics and species transport.
A CFD study of hygro-thermal stresses distribution in tubular-shaped ambient air-breathing PEM micro fuel cell during regular cell operation  [PDF]
Maher A.R. Sadiq Al-Baghdadi
International Journal of Energy and Environment , 2010,
Abstract: The need for improved lifetime of air-breathing proton exchange membrane (PEM) fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature, humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a novel, tubular, ambient air-breathing, proton exchange membrane micro fuel cell has been developed and used to investigate the displacement, deformation, and stresses inside the whole cell, which developed during the cell operation due to the changes of temperature and relative humidity. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. In addition to the new and complex geometry, a unique feature of the present model is to incorporate the effect of mechanical, hygro and thermal stresses into actual three-dimensional fuel cell model. The results show that the non-uniform distribution of stresses, caused by the temperature gradient in the cell, induces localized bending stresses, which can contribute to delaminating between the membrane and the gas diffusion layers. The non-uniform distribution of stresses can also contribute to delaminating between the gas diffusion layers and the current collectors. These stresses may explain the occurrence of cracks and pinholes in the fuel cells components under steady–state loading during regular cell operation, especially
Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements  [PDF]
Martin Geske,Maik Heuer,Günter Heideck,Zbigniew A. Styczynski
Energies , 2010, DOI: 10.3390/en3040770
Abstract: A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.
Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance  [PDF]
Hong Liu,Peiwen Li,Daniel Juarez-Robles
Frontiers in Energy Research , 2014, DOI: 10.3389/fenrg.2014.00002
Abstract: In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for a relatively large sized fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.
Optimal design of PEM fuel cells to generate maximum power: A CFD study  [PDF]
Maher A.R. Sadiq Al-Baghdadi
International Journal of Energy and Environment , 2011,
Abstract: A full three-dimensional, multi-phase computational fluid dynamics model of a PEM fuel cell has been developed. The parametric study using this model has been performed and discussed in detail. Optimization study of a PEM fuel cell performance has been performed. The study quantifies and analyses the impact of operating, design, and material parameters on fuel cell performance and get an optimal design for PEM fuel cells to generate maximum power. To generate maximum power, the results show that the cell must be operate at higher cell operating temperature, higher cell operating pressure, higher stoichiometric flow ratio, and must have higher GDL porosity, higher GDL thermal conductivity, narrower gases channels, and thinner membrane. At these optimum conditions, the result shows that the total displacement and the degree of the deformation inside the MEA were decreased. However, the Miss stress in the membrane was increased due to higher cell operating temperature.
Fuzzy Logic based Constant Voltage Control of PEM Fuel Cells
Fan Liping,Liu Yi,Li Chong
TELKOMNIKA : Indonesian Journal of Electrical Engineering , 2012, DOI: 10.11591/telkomnika.v10i4.847
Abstract: Proton exchange membrane fuel cells have been receiving more and more attention these recent years. Maintaining a fuel cell system in correct operating conditions requires good control. Based on the mathematical model of proton exchange membrane fuel cells described in this paper, the fuzzy logic controllers was designed for the proton exchange membrane fuel cell to make it possible to output constant voltage. Simulation results show that the proposed fuzzy controllers can give good control effects.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.