oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Arsenic Trioxide Exerts Antimyeloma Effects by Inhibiting Activity in the Cytoplasmic Substrates of Histone Deacetylase 6  [PDF]
Xiaoyan Qu, Juan Du, Chunyang Zhang, Weijun Fu, Hao Xi, Jianfeng Zou, Jian Hou
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0032215
Abstract: Arsenic trioxide (As2O3) has shown remarkable efficacy for the treatment of multiple myeloma (MM). Histone deacetylases (HDAC) play an important role in the control of gene expression, and their dysregulation has been linked to myeloma. Especially, HDAC6, a unique cytoplasmic member of class II, which mainly functions as α-tubulin deacetylase and Hsp90 deacetylase, has become a target for drug development to treat cancer due to its major contribution in oncogenic cell transformation. However, the mechanisms of action for As2O3 have not yet been defined. In this study, we investigated the effect of As2O3 on proliferation and apoptosis in human myeloma cell line and primary myeloma cells, and then we studied that As2O3 exerts antimyeloma effects by inhibiting activity in the α-tubulin and Hsp90 through western blot analysis and immunoprecipitation. We found that As2O3 acts directly on MM cells at relatively low concentrations of 0.5~2.5 μM, which effects survival and apoptosis of MM cells. However, As2O3 inhibited HDAC activity at the relatively high concentration and dose-dependent manner (great than 4 μM). Subsequently, we found that As2O3 treatment in a dose- and time-dependent fashion markedly increased the level of acetylated α-tubulin and acetylated Hsp90, and inhibited the chaperone association with IKKα activities and increased degradation of IKKα. Importantly, the loss of IKKα-associated Hsp90 occurred prior to any detectable loss in the levels of IKKα, indicating a novel pathway by which As2O3 down-regulates HDAC6 to destabilize IKKα protein via Hsp90 chaperone function. Furthermore, we observed the effect of As2O3 on TNF-α-induced NF-κB signaling pathway was to significantly reduced phosphorylation of Ser-536 on NF-κB p65. Therefore, our studies provide an important insight into the molecular mechanism of anti-myeloma activity of As2O3 in HDAC6-Hsp90-IKKα-NFκB signaling axis and the rationale for As2O3 can be extended readily using all the HDAC associated diseases.
Synergistic Apoptosis-Inducing Antileukemic Effects of Arsenic Trioxide and Mucuna macrocarpa Stem Extract in Human Leukemic Cells via a Reactive Oxygen Species-Dependent Mechanism
Kuan-Hung Lu,Hui-Ju Lee,Min-Li Huang,Shang-Chih Lai,Yu-Ling Ho,Yuan-Shiun Chang,Chin-Wen Chi
Evidence-Based Complementary and Alternative Medicine , 2012, DOI: 10.1155/2012/921430
Abstract: The objective of this study was to examine the potential of enhancing the antileukemic activity of arsenic trioxide (ATO) by combining it with a folk remedy, crude methanolic extract of Mucuna macrocarpa (CMEMM). Human leukemia cells HL-60, Jurkat, and Molt-3 were treated with various doses of ATO, CMEMM, and combinations thereof for 24 and 48 h. Results indicated that the combination of 2.5 μM ATO and 50 μg/mL CMEMM synergistically inhibited cell proliferation in HL-60 and Jurkat cell lines. Apoptosis triggered by ATO/CMEMM treatment was confirmed by accumulation of cells in the sub-G1 phase in cell cycle analyses, characteristic apoptotic nuclear fragmentation, and increased percentage of annexin V-positive apoptotic cells. Such combination treatments also led to elevation of reactive oxygen species (ROS). The antioxidants N-acetyl cysteine (NAC), butylated hydroxytoluene, and α-tocopherol prevented cells from ATO/CMEMM-induced apoptosis. The ATO/CMEMM-induced activation of caspase-3 and caspase-9 can be blocked by NAC. In summary, these results suggest that ATO/CMEMM combination treatment exerts synergistic apoptosis-inducing effects in human leukemic cells through a ROS-dependent mechanism and may provide a promising antileukemic approach in the future.
2-Methoxyestradiol Induces Mitotic Arrest, Apoptosis, and Synergistic Cytotoxicity with Arsenic Trioxide in Human Urothelial Carcinoma Cells  [PDF]
Kuan-Lin Kuo, Wei-Chou Lin, I-Lin Ho, Hong-Chiang Chang, Ping-Yi Lee, Yuan-Ting Chung, Ju-Ton Hsieh, Yeong-Shiau Pu, Chung-Sheng Shi, Kuo-How Huang
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0068703
Abstract: 2-Methoxyestradiol (2-ME), an endogenous derivative of 17β-estradiol, has been reported to elicit antiproliferative responses in various tumors. In this study, we investigated the effects of 2-ME on cell viability, proliferation, cell cycle, and apoptosis in human urothelial carcinoma (UC) cell lines. We used two high-grade human bladder UC cell lines (NTUB1 and T24). After treatment with 2-ME, the cell viability and apoptosis were measured by MTT assay and flow cytometry (fluorescence-activated cell sorting), with annexin V-FITC staining and propidium iodide (PI) labeling. DNA fragmentation was analyzed by agarose gel electrophoresis. Flow cytometry with PI labeling was used for the cell cycle analyses. The protein levels of caspase activations, poly (ADP-ribose) polymerase (PARP) cleavage, phospho-histone H2A.X, phospho-Bad, and cell cycle regulatory molecules were measured by Western blot. The effects of the drug combinations were analyzed using the computer software, CalcuSyn. We demonstrated that 2-ME effectively induces dose-dependent cytotoxicity and apoptosis in human UC cells after 24 h exposure. DNA fragmentation, PARP cleavage, and caspase-3, 7, 8, 9 activations can be observed with 2-ME-induced apoptosis. The decreased phospho-Bad (Ser136 and Ser155) and mitotic arrest of the cell cycle in the process of apoptosis after 2-ME treatment was remarkable. In response to mitotic arrest, the mitotic forms of cdc25C, phospho-cdc2, cyclin B1, and phospho-histone H3 (Ser10) were activated. In combination with arsenic trioxide (As2O3), 2-ME elicited synergistic cytotoxicity (combination index <1) in UC cells. We concluded that 2-ME significantly induces apoptosis through decreased phospho-Bad and arrests bladder UC cells at the mitotic phase. The synergistic antitumor effect with As2O3 provides a novel implication in clinical treatment of UC.
BIM-Mediated AKT Phosphorylation Is a Key Modulator of Arsenic Trioxide-Induced Apoptosis in Cisplatin-Sensitive and -Resistant Ovarian Cancer Cells  [PDF]
Zhu Yuan, Fang Wang, Zhiwei Zhao, Xinyu Zhao, Ji Qiu, Chunlai Nie, Yuquan Wei
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0020586
Abstract: Background Chemo-resistance to cisplatin-centered cancer therapy is a major obstacle to the effective treatment of human ovarian cancer. Previous reports indicated that arsenic trioxide (ATO) induces cell apoptosis in both drug-sensitive and -resistant ovarian cancer cells. Principal Findings In this study, we determined the molecular mechanism of ATO-induced apoptosis in ovarian cancer cells. Our data demonstrated that ATO induced cell apoptosis by decreasing levels of phosphorylated AKT (p-AKT) and activating caspase-3 and caspase-9. Importantly, BIM played a critical role in ATO-induced apoptosis. The inhibition of BIM expression prevented AKT dephosphorylation and inhibited caspase-3 activation during cell apoptosis. However, surprisingly, gene silencing of AKT or FOXO3A had little effect on BIM expression and phosphorylation. Moreover, the activation of caspase-3 by ATO treatment improved AKT dephosphorylation, not only by cleaving the regulatory A subunit of protein phosphatase 2A (PP2A), but also by increasing its activation. Furthermore, our data indicated that the c-Jun N-terminal kinases (JNK) pathway is involved in the regulation of BIM expression. Conclusions We demonstrated the roles of BIM in ATO-induced apoptosis and the molecular mechanisms of BIM expression regulated by ATO during ovarian cancer cell apoptosis. Our findings suggest that BIM plays an important role in regulating p-AKT by activating caspase-3 and that BIM mediates the level of AKT phosphorylation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells.
Vascular Disrupting Agent Arsenic Trioxide Enhances Thermoradiotherapy of Solid Tumors
Robert J. Griffin,Brent W. Williams,Nathan A. Koonce,John C. Bischof,Chang W. Song,Rajalakshmi Asur,Meenakshi Upreti
Journal of Oncology , 2012, DOI: 10.1155/2012/934918
Abstract: Our previous studies demonstrated arsenic trioxide- (ATO-) induced selective tumor vascular disruption and augmentation of thermal or radiotherapy effect against solid tumors. These results suggested that a trimodality approach of radiation, ATO, and local hyperthermia may have potent therapeutic efficacy against solid tumors. Here, we report the antitumor effect of hypofractionated radiation followed by ATO administration and local 42.5 °C hyperthermia and the effects of cisplatin and thermoradiotherapy. We found that the therapeutic efficacy of ATO-based thermoradiotherapy was equal or greater than that of cisplatin-based thermoradiotherapy, and marked evidence of in vivo apoptosis and tumor necrosis were observed in ATO-treated tumors. We conclude that ATO-based thermoradiotherapy is a powerful means to control tumor growth by using vascular disruption to augment the effects of thermal and radiation therapy.
Cytotoxicity patterns of arsenic trioxide exposure on HaCaT keratinocytes  [cached]
Udensi UK,Graham-Evans BE,Rogers CS,Isokpehi RD
Clinical, Cosmetic and Investigational Dermatology , 2011,
Abstract: Udensi K Udensi1,2, Barbara E Graham-Evans1, Christian Rogers1, Raphael D Isokpehi1,21RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217; 2Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, PO Box 18540, Jackson MS 39217, USABackground: Arsenic is a ubiquitous environmental toxicant, and abnormalities of the skin are the most common outcomes of long-term, low-dose, chronic arsenic exposure. If the balance between keratinocyte proliferation, differentiation, and death is perturbed, pathologic changes of the epidermis may result, including psoriasis, atopic dermatitis, and certain forms of ichthyosis. Therefore, research investigations using in vitro human epidermal cells could help elucidate cellular and molecular processes in keratinocytes affected by arsenic. Data from such investigations could also provide the basis for developing cosmetic intervention for skin diseases caused by arsenic.Methods: The viability of HaCaT keratinocyte cultures with or without prior exposure to low-dose arsenic trioxide was compared for varying concentrations of arsenic trioxide over a time course of 14 days because in untreated control cultures, approximately 2 weeks is required to complete cell differentiation. Long-term cultures were established by culturing HaCaT cells on collagen IV, and cells were subsequently exposed to 0 parts per million (ppm), 1 ppm, 5 ppm, 7.5 ppm, 10 ppm, and 15 ppm of arsenic trioxide. The percentages of viable cells as well as DNA damage after exposure were determined on Day 2, Day 5, Day 8, and Day 14.Results: Using both statistical and visual analytics approaches for data analysis, we have observed a biphasic response at a 5 ppm dose with cell viability peaking on Day 8 in both chronic and acute exposures. Further, a low dose of 1 ppm arsenic trioxide enhanced HaCaT keratinocyte proliferation, whereas doses above 7.5 ppm inhibited growth.Conclusion: The time course profiling of arsenic trioxide cytotoxicity using long-term HaCaT keratinocyte cultures presents an approach to modeling the human epidermal cellular responses to varying doses of arsenic trioxide treatment or exposure. A low dose of arsenic trioxide appears to aid cell growth but concomitantly disrupts the DNA transcription process.Keywords: arsenic trioxide, chronic exposure, DNA damage, HaCaT, keratinocyte, visual analytics
Factors Determining Sensitivity and Resistance of Tumor Cells to Arsenic Trioxide  [PDF]
Serkan Sertel, Margaret Tome, Margaret M. Briehl, Judith Bauer, Kai Hock, Peter K. Plinkert, Thomas Efferth
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0035584
Abstract: Previously, arsenic trioxide showed impressive regression rates of acute promyelocytic leukemia. Here, we investigated molecular determinants of sensitivity and resistance of cell lines of different tumor types towards arsenic trioxide. Arsenic trioxide was the most cytotoxic compound among 8 arsenicals investigated in the NCI cell line panel. We correlated transcriptome-wide microarray-based mRNA expression to the IC50 values for arsenic trioxide by bioinformatic approaches (COMPARE and hierarchical cluster analyses, Ingenuity signaling pathway analysis). Among the identified pathways were signaling routes for p53, integrin-linked kinase, and actin cytoskeleton. Genes from these pathways significantly predicted cellular response to arsenic trioxide. Then, we analyzed whether classical drug resistance factors may also play a role for arsenic trioxide. Cell lines transfected with cDNAs for catalase, thioredoxin, or the anti-apoptotic bcl-2 gene were more resistant to arsenic trioxide than mock vector transfected cells. Multidrug-resistant cells overexpressing the MDR1, MRP1 or BCRP genes were not cross-resistant to arsenic trioxide. Our approach revealed that response of tumor cells towards arsenic trioxide is multi-factorial.
Cytotoxicity patterns of arsenic trioxide exposure on HaCaT keratinocytes
Udensi UK, Graham-Evans BE, Rogers CS, Isokpehi RD
Clinical, Cosmetic and Investigational Dermatology , 2011, DOI: http://dx.doi.org/10.2147/CCID.S24677
Abstract: otoxicity patterns of arsenic trioxide exposure on HaCaT keratinocytes Original Research (2152) Total Article Views Authors: Udensi UK, Graham-Evans BE, Rogers CS, Isokpehi RD Published Date December 2011 Volume 2011:4 Pages 183 - 190 DOI: http://dx.doi.org/10.2147/CCID.S24677 Udensi K Udensi1,2, Barbara E Graham-Evans1, Christian Rogers1, Raphael D Isokpehi1,2 1RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217; 2Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, PO Box 18540, Jackson MS 39217, USA Background: Arsenic is a ubiquitous environmental toxicant, and abnormalities of the skin are the most common outcomes of long-term, low-dose, chronic arsenic exposure. If the balance between keratinocyte proliferation, differentiation, and death is perturbed, pathologic changes of the epidermis may result, including psoriasis, atopic dermatitis, and certain forms of ichthyosis. Therefore, research investigations using in vitro human epidermal cells could help elucidate cellular and molecular processes in keratinocytes affected by arsenic. Data from such investigations could also provide the basis for developing cosmetic intervention for skin diseases caused by arsenic. Methods: The viability of HaCaT keratinocyte cultures with or without prior exposure to low-dose arsenic trioxide was compared for varying concentrations of arsenic trioxide over a time course of 14 days because in untreated control cultures, approximately 2 weeks is required to complete cell differentiation. Long-term cultures were established by culturing HaCaT cells on collagen IV, and cells were subsequently exposed to 0 parts per million (ppm), 1 ppm, 5 ppm, 7.5 ppm, 10 ppm, and 15 ppm of arsenic trioxide. The percentages of viable cells as well as DNA damage after exposure were determined on Day 2, Day 5, Day 8, and Day 14. Results: Using both statistical and visual analytics approaches for data analysis, we have observed a biphasic response at a 5 ppm dose with cell viability peaking on Day 8 in both chronic and acute exposures. Further, a low dose of 1 ppm arsenic trioxide enhanced HaCaT keratinocyte proliferation, whereas doses above 7.5 ppm inhibited growth. Conclusion: The time course profiling of arsenic trioxide cytotoxicity using long-term HaCaT keratinocyte cultures presents an approach to modeling the human epidermal cellular responses to varying doses of arsenic trioxide treatment or exposure. A low dose of arsenic trioxide appears to aid cell growth but concomitantly disrupts the DNA transcription process.
Resveratrol and Arsenic Trioxide Act Synergistically to Kill Tumor Cells In Vitro and In Vivo  [PDF]
Xiao-Yan Zhao, Shen Yang, You-Ran Chen, Pei-Chun Li, Meng-Meng Dou, Jie Zhang
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0098925
Abstract: Background and Aims Arsenic trioxide (As2O3), which used as an effective agent in the treatment of leukaemia and other solid tumors, is largely limited by its toxicity. QT prolongation, torsades de pointes and sudden heart death have been implicated in the cardiotoxicity of As2O3. The present study was designed to explore whether the combination of As2O3 and resveratrol could generate a more powerful anti-cancer effect both in vitro and in vivo. Materials and Methods MTT assay was performed to assess the proliferation of Hela, MCF-7 and NB4 cells. Isobolographic analysis was used to evaluate combination index values from cell viability data. The apoptosis and the cellular reactive oxygen species (ROS) level were assessed by fluorescent microscopy and flow cytometry separately in vitro. The effect of As2O3, alone and in combination with resveratrol on Hela tumor growth in an orthotopic nude mouse model was also investigated. The tumor volume and the immunohistochemical analysis of CD31, CD34 and VEGF were determined. Results Resveratrol dramatically enhanced the anti-cancer effect induced by As2O3 in vitro. In addition, isobolographic analysis further demonstrated that As2O3 and resveratrol generated a synergistic action. More apoptosis and ROS generation were observed in the combination treatment group. Similar synergistic effects were found in nude mice in vivo. The combination of As2O3 and resveratrol dramatically suppressed both tumor growth and angiogenesis in nude mice. Conclusions Combining As2O3 with resveratrol would be a novel strategy to treat cancer in clinical practice.
Arsenic Trioxide Modulates DNA Synthesis and Apoptosis in Lung Carcinoma Cells  [PDF]
Alice M. Walker,Jacqueline J. Stevens,Kenneth Ndebele,Paul B. Tchounwou
International Journal of Environmental Research and Public Health , 2010, DOI: 10.3390/ijerph7051996
Abstract: Arsenic trioxide, the trade name Trisenox, is a drug used to treat acute promyleocytic leukemia (APL). Studies have demonstrated that arsenic trioxide slows cancer cells growth. Although arsenic influences numerous signal-transduction pathways, cell-cycle progression, and/or apoptosis, its apoptotic mechanisms are complex and not entirely delineated. The primary objective of this research was to evaluate the effects of arsenic trioxide on DNA synthesis and to determine whether arsenic-induced apoptosis is mediated via caspase activation, p38 mitogen–activated protein kinase (MAPK), and cell cycle arrest. To achieve this goal, lung cancer cells (A549) were exposed to various concentrations (0, 2, 4, 6, 8, and 10 μg/mL) of arsenic trioxide for 48 h. The effect of arsenic trioxide on DNA synthesis was determined by the [3H]thymidine incorporation assay. Apoptosis was determined by the caspase-3 fluorescein isothiocyanate (FITC) assay, p38 MAP kinase activity was determined by an immunoblot assay, and cell-cycle analysis was evaluated by the propidium iodide assay. The [ 3H]thymidine-incorporation assay revealed a dose-related cytotoxic response at high levels of exposure. Furthermore, arsenic trioxide modulated caspase 3 activity and induced p38 MAP kinase activation in A549 cells. However, cell-cycle studies showed no statistically significant differences in DNA content at subG1 check point between control and arsenic trioxide treated cells.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.