Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
A statistical study of diurnal, seasonal and solar cycle variations of F-region and topside auroral upflows observed by EISCAT between 1984 and 1996  [PDF]
C. Foster,M. Lester,J. A. Davies
Annales Geophysicae (ANGEO) , 2003,
Abstract: A statistical analysis of F-region and topside auroral ion upflow events is presented. The study is based on observations from EISCAT Common Programmes (CP) 1 and 2 made between 1984 and 1996, and Common Programme 7 observations taken between 1990 and 1995. The occurrence frequency of ion upflow events (IUEs) is examined over the altitude range 200 to 500 km, using field-aligned observations from CP-1 and CP-2. The study is extended in altitude with vertical measurements from CP-7. Ion upflow events were identified by consideration of both velocity and flux, with threshold values of 100 m s–1 and 1013 m–2 s–1, respectively. The frequency of occurrence of IUEs is seen to increase with increasing altitude. Further analysis of the field-aligned observations reveals that the number and nature of ion upflow events vary diurnally and with season and solar activity. In particular, the diurnal distribution of upflows is strongly dependent on solar cycle. Furthermore, events identified by the velocity selection criterion dominate at solar minimum, whilst events identified by the upward field-aligned flux criterion dominated at solar maximum. The study also provides a quantitative estimate of the proportion of upflows that are associated with enhanced plasma temperature. Between 50 and 60% of upflows are simultaneous with enhanced ion temperature, and approximately 80% of events are associated with either increased F-region ion or electron temperatures. Key words. Ionosphere (auroral ionosphere; particle acceleration)
Origin of type-2 thermal-ion upflows in the auroral ionosphere
R. W. Sims, S. E. Pryse,W. F. Denig
Annales Geophysicae (ANGEO) , 2005,
Abstract: Results are presented from a multi-instrument study of the spatial distribution of the summertime, polar ionospheric electron density under conditions of relatively stable IMF Bz<0. The EISCAT Svalbard radar revealed a region of enhanced densities near magnetic noon that, when comparing radar scans from different local times, appeared to be spatially confined in longitude. This was identified as the tongue-of-ionisation (TOI) that comprised photoionisation of sub-auroral origin that is drawn poleward into the polar cap by the anti-sunward flow of the high-latitude convection. The TOI was bounded in longitude by high-latitude troughs; the pre-noon trough on the morning side with a minimum near 78° N and the post-noon trough on the afternoon side with a minimum at 80° N. Complementary measurements by radio tomography, the SuperDARN radars, and a DMSP satellite, together with comparisons with earlier modelling work, provided supporting evidence for the interpretation of the density structuring, and highlighted the role of plasma convection in the formation of summertime plasma distribution. Soft particle precipitation played only a secondary role in the modulation of the large summertime densities entering the polar cap.
Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere
P. J. G. Perron, J.-M. A. No l, K. Kabin,J.-P. St-Maurice
Annales Geophysicae (ANGEO) , 2013,
Abstract: Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA) instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius corrections are small. We derived a new fluid-like expression for the critical drift which depends explicitly on ion anisotropy. More importantly, for ion to electron temperature ratios typical of F-region, solutions of the kinetic dispersion relation show that ion temperature anisotropy may significantly lower the drift threshold required for instability. In some cases, a perpendicular to parallel ion temperature ratio of 2 and may reduce the relative drift required for the onset of instability by a factor of approximately 30, assuming the ion-acoustic speed of the medium remains constant. Therefore, the ion temperature anisotropy should be considered in future studies of ion-acoustic waves and instabilities in the high-latitude ionospheric F-region.
Simultaneous two hemisphere observations of the presence of polar patches in the nightside ionosphere  [cached]
A. S. Rodger,M. Pinnock,J. R. Dudeney,J. Waterman
Annales Geophysicae (ANGEO) , 2003,
Abstract: The presence of polar patches as observed simultaneously in the same magnetic meridian of opposite nightside ionospheres by coherent and incoherent scatter radars are described. The patches appear to be related to variations either in the Bz or By component of the interplanetary magnetic field which cause transient merging on the dayside magnetopause. The passage and characteristics of polar patches as they traverse the polar cap into the nightside auroral oval are not significantly affected by the occurrence of small substroms. This study illustrates how the observations of polar patches in the nightside high-latitude ionosphere could be of great value in determining their formation process.
Enhanced variability in the topside ionosphere  [cached]
T. Gulyaeva,P. Spalla
Annals of Geophysics , 1995, DOI: 10.4401/ag-4104
Abstract: Variability of total electron content (TEC) observed by the Faraday rotation method at Florence has been stud- ied with the same technique applied independently to the ionospheric parameters foF2 and M(3000)F2 of the ground-based vertical-incidence sounding database (VID). Results of daily and monthly TEC disturbance indices at sub-ionospheric point are compared with variability of the ionosphere at Rome and Gibilmanna (de- duced from VID) for a period of 1976 to 1991. During moderate and high solar activity the variability of TEC is greater than the variability of VID, whereas during solar minimum the situation is opposite. In this context joint TEC and VID observations distinguish either the F region peak or the topside ionosphere heights where the dynamic processes dominate at different times.
Storm-time ionization enhancements at the topside low-latitude ionosphere
A. Dmitriev,H.-C. Yeh
Annales Geophysicae (ANGEO) , 2008,
Abstract: Ion density enhancements at the topside low-latitude ionosphere during a Bastille storm on 15–16 July 2000 and Halloween storms on 29–31 October 2003 were studied using data from ROCSAT-1/IPEI experiment. Prominent ion density enhancements demonstrate similar temporal dynamics both in the sunlit and in the nightside hemispheres. The ion density increases dramatically (up to two orders of magnitude) during the main phase of the geomagnetic storms and reaches peak values at the storm maximum. The density enhancements are mostly localized in the region of a South Atlantic Anomaly (SAA), which is characterized by very intense fluxes of energetic particles. The dynamics of near-Earth radiation was studied using SAMPEX/LEICA data on >0.6 MeV electrons and >0.8 MeV protons at around 600 km altitude. During the magnetic storms the energetic particle fluxes in the SAA region and in its vicinity increase more than three orders of magnitude. The location of increased fluxes overlaps well with the regions of ion density enhancements. Two mechanisms were considered to be responsible for the generation of storm-time ion density enhancements: prompt penetration of the interplanetary electric field and abundant ionization of the ionosphere by enhanced precipitation of energetic particles from the radiation belt.
Quantitative modelling of the closure of meso-scale parallel currents in the nightside ionosphere
A. Marchaudon, J.-C. Cerisier, O. Amm, M. Lester, C. W. Carlson,G. K. Parks
Annales Geophysicae (ANGEO) , 2004,
Abstract: On 12 January 2000, during a northward IMF period, two successive conjunctions occur between the CUTLASS SuperDARN radar pair and the two satellites rsted and FAST. This situation is used to describe and model the electrodynamic of a nightside meso-scale arc associated with a convection shear. Three field-aligned current sheets, one upward and two downward on both sides, are observed. Based on the measurements of the parallel currents and either the conductance or the electric field profile, a model of the ionospheric current closure is developed along each satellite orbit. This model is one-dimensional, in a first attempt and a two-dimensional model is tested for the rsted case. These models allow one to quantify the balance between electric field gradients and ionospheric conductance gradients in the closure of the field-aligned currents. These radar and satellite data are also combined with images from Polar-UVI, allowing for a description of the time evolution of the arc between the two satellite passes. The arc is very dynamic, in spite of quiet solar wind conditions. Periodic enhancements of the convection and of electron precipitation associated with the arc are observed, probably associated with quasi-periodic injections of particles due to reconnection in the magnetotail. Also, a northward shift and a reorganisation of the precipitation pattern are observed, together with a southward shift of the convection shear. Key words. Ionosphere (auroral ionosphere; electric fields and currents; particle precipitation) – Magnetospheric physics (magnetosphere-ionosphere interactions) Full Article (PDF, 645 KB) Citation: Marchaudon, A., Cerisier, J.-C., Amm, O., Lester, M., Carlson, C. W., and Parks, G. K.: Quantitative modelling of the closure of meso-scale parallel currents in the nightside ionosphere, Ann. Geophys., 22, 125-140, doi:10.5194/angeo-22-125-2004, 2004. Bibtex EndNote Reference Manager XML
Electon density profiles of the topside ionosphere
X. Huang,B. W. Reinisch,D. Bilitza,R. F. Benson
Annals of Geophysics , 2002, DOI: 10.4401/ag-3481
Abstract: The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h m F 2 to ~ 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350 000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status. html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling ~ 70% of the ionograms. An editing process is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.
Astrid-2 and ground-based observations of the auroral bulge in the middle of the nightside convection throat  [PDF]
G. T. Marklund,T. Karlsson,P. Eglitis,H. Opgenoorth
Annales Geophysicae (ANGEO) , 2003,
Abstract: Results concerning the electrodynamics of the nightside auroral bulge are presented based on simultaneous satellite and ground-based observations. The satellite data include Astrid-2 measurements of electric fields, currents and particles from a midnight auroral oval crossing and Polar UVI images of the large-scale auroral distribution. The ground-based observations include STARE and SuperDARN electric fields and magnetic records from the Greenland and MIRACLE magnetometer network, the latter including stations from northern Scandinavia north to Svalbard. At the time of the Astrid-2 crossing the ground-based data reveal intense electrojet activity, both to the east and west of the Astrid-2 trajectory, related to the Polar observations of the auroral bulge but not necessarily to a typical substorm. The energetic electron fluxes measured by Astrid-2 across the auroral oval were generally weak being consistent with a gap observed in the auroral luminosity distribution. The electric field across the oval was directed westward, intensifying close to the poleward boundary followed by a decrease in the polar cap. The combined observations suggests that Astrid-2 was moving close to the separatrix between the dusk and dawn convection cells in a region of low conductivity. The constant westward direction of the electric field across the oval indicates that current continuity was maintained, not by polarisation electric fields (as in a Cowling channel), but solely by localized up- and downward field-aligned currents in good agreement with the Astrid-2 magnetometer data. The absence of a polarisation electric field and thus of an intense westward closure current between the dawn and dusk convection cells is consistent with the relatively weak precipitation and low conductivity in the convection throat. Thus, the Cowling current model is not adequate for describing the electrodynamics of the nightside auroral bulge treated here. Key words. Ionosphere (auroral ionosphere; electric fields and currents; plasma convection)
Yearly variations in the low-latitude topside ionosphere  [PDF]
G.J. Bailey,Y. Z. Su,K.-I. Oyama
Annales Geophysicae (ANGEO) , 2003,
Abstract: Observations made by the Hinotori satellite have been analysed to determine the yearly variations of the electron density and electron temperature in the low-latitude topside ionosphere. The observations reveal the existence of an equinoctial asymmetry in the topside electron density at low latitudes, i.e. the density is higher at one equinox than at the other. The asymmetry is hemisphere-dependent with the higher electron density occurring at the March equinox in the Northern Hemisphere and at the September equinox in the Southern Hemisphere. The asymmetry becomes stronger with increasing latitude in both hemispheres. The behaviour of the asymmetry has no significant longitudinal and magnetic activity variations. A mechanism for the equinoctial asymmetry has been investigated using CTIP (coupled thermosphere ionosphere plasmasphere model). The model results reproduce the observed equinoctial asymmetry and suggest that the asymmetry is caused by the north-south imbalance of the thermosphere and ionosphere at the equinoxes due to the slow response of the thermosphere arising from the effects of the global thermospheric circulation. The observations also show that the relationship between the electron density and electron temperature is different for daytime and nighttime. During daytime the yearly variation of the electron temperature has negative correlation with the electron density, except at magnetic latitudes lower than 10°. At night, the correlation is positive. Key words: Ionosphere (equatorial ionosphere; ionosphere-atmosphere interactions; plasma temperature and density)
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.