oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
The Bimodal Lifestyle of Intracellular Salmonella in Epithelial Cells: Replication in the Cytosol Obscures Defects in Vacuolar Replication  [PDF]
Preeti Malik-Kale, Seth Winfree, Olivia Steele-Mortimer
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0038732
Abstract: Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying intracellular pathogens.
A Salmonella Small Non-Coding RNA Facilitates Bacterial Invasion and Intracellular Replication by Modulating the Expression of Virulence Factors  [PDF]
Hao Gong,Gia-Phong Vu,Yong Bai,Elton Chan,Ruobin Wu,Edward Yang,Fenyong Liu ,Sangwei Lu
PLOS Pathogens , 2011, DOI: 10.1371/journal.ppat.1002120
Abstract: Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo.
Tip60 HAT Activity Mediates APP Induced Lethality and Apoptotic Cell Death in the CNS of a Drosophila Alzheimer's Disease Model  [PDF]
Sheila K. Pirooznia, Jessica Sarthi, Ashley A. Johnson, Meridith S. Toth, Kellie Chiu, Sravanthi Koduri, Felice Elefant
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0041776
Abstract: Histone acetylation of chromatin promotes dynamic transcriptional responses in neurons that influence neuroplasticity critical for cognitive ability. It has been demonstrated that Tip60 histone acetyltransferase (HAT) activity is involved in the transcriptional regulation of genes enriched for neuronal function as well as the control of synaptic plasticity. Accordingly, Tip60 has been implicated in the neurodegenerative disorder Alzheimer's disease (AD) via transcriptional regulatory complex formation with the AD linked amyloid precursor protein (APP) intracellular domain (AICD). As such, inappropriate complex formation may contribute to AD-linked neurodegeneration by misregulation of target genes involved in neurogenesis; however, a direct and causative epigenetic based role for Tip60 HAT activity in this process during neuronal development in vivo remains unclear. Here, we demonstrate that nervous system specific loss of Tip60 HAT activity enhances APP mediated lethality and neuronal apoptotic cell death in the central nervous system (CNS) of a transgenic AD fly model while remarkably, overexpression of Tip60 diminishes these defects. Notably, all of these effects are dependent upon the C-terminus of APP that is required for transcriptional regulatory complex formation with Tip60. Importantly, we show that the expression of certain AD linked Tip60 gene targets critical for regulating apoptotic pathways are modified in the presence of APP. Our results are the first to demonstrate a functional interaction between Tip60 and APP in mediating nervous system development and apoptotic neuronal cell death in the CNS of an AD fly model in vivo, and support a novel neuroprotective role for Tip60 HAT activity in AD neurodegenerative pathology.
Salmonella Modulation of Host Cell Gene Expression Promotes Its Intracellular Growth  [PDF]
Sebastian Hannemann,Beile Gao,Jorge E. Galán
PLOS Pathogens , 2013, DOI: 10.1371/journal.ppat.1003668
Abstract: Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.
HLA-B27 Modulates Intracellular Growth of Salmonella Pathogenicity Island 2 Mutants and Production of Cytokines in Infected Monocytic U937 Cells  [PDF]
Shichao Ge, Qiushui He, Kaisa Granfors
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0034093
Abstract: Background Salmonella enterica serovar Enteritidis PT4 KS8822/88 replicates rapidly in HLA-B27-transfected human monocytic U937 cells. In this process, Salmonella pathogenicity island 2 (SPI-2) genes play a crucial role. Our previous study indicated that 118 Salmonella genes, including 8 SPI-2 genes were affected by HLA-B27 antigen during Salmonella infection of U937 cells. Methods/Principal Findings To further investigate Salmonella replication in HLA-B27-positive U937 monocytic cells, two SPI-2 genes, ssaS and sscA up-regulated most during Salmonella infection of HLA-B27-transfected U937 cells, were mutated by using one-step gene disruption method. Intracellular survival and replication of the mutants in the U937 cells was compared to that of the wild type strain. Surprisingly, the two mutated strains replicated significantly more than the wild type bacteria in HLA-B27-transfected cells. Secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) was significantly induced during the infection of HLA-B27-transfected U937 cells with the mutants. The results indicated that the certain SPI-2 genes in wild type bacteria suppress Salmonella intracellular growth and production of cytokines in infected HLA-B27-transfected cells. HLA-B27-associated modulation of Salmonella SPI-2 genes and cytokine production may have importance in the persistent infection of the bacteria and the pathogenesis of reactive arthritis. Conclusions The study provides evidence that certain virulence factors of pathogens can reduce the intracellular growth in the host cells. We suggest that the limiting intracellular growth might be a strategy for persistence of bacteria in host cells, keeping a balance between pathogenic growth and pathogenesis.
Microarray Analysis Uncovers a Role for Tip60 in Nervous System Function and General Metabolism  [PDF]
Meridith Lorbeck,Keerthy Pirooznia,Jessica Sarthi,Xianmin Zhu,Felice Elefant
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0018412
Abstract: Tip60 is a key histone acetyltransferase (HAT) enzyme that plays a central role in diverse biological processes critical for general cell function; however, the chromatin-mediated cell-type specific developmental pathways that are dependent exclusively upon the HAT activity of Tip60 remain to be explored.
An Incomplete TCA Cycle Increases Survival of Salmonella Typhimurium during Infection of Resting and Activated Murine Macrophages  [PDF]
Steven D. Bowden,Vinoy K. Ramachandran,Gitte M. Knudsen,Jay C. D. Hinton,Arthur Thompson
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0013871
Abstract: In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice.
Intracellular Demography and the Dynamics of Salmonella enterica Infections  [PDF]
Sam P. Brown,Stephen J. Cornell,Mark Sheppard,Andrew J. Grant,Duncan J. Maskell,Bryan T. Grenfell,Pietro Mastroeni
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.0040349
Abstract: An understanding of within-host dynamics of pathogen interactions with eukaryotic cells can shape the development of effective preventive measures and drug regimes. Such investigations have been hampered by the difficulty of identifying and observing directly, within live tissues, the multiple key variables that underlay infection processes. Fluorescence microscopy data on intracellular distributions of Salmonella enterica serovar Typhimurium (S. Typhimurium) show that, while the number of infected cells increases with time, the distribution of bacteria between cells is stationary (though highly skewed). Here, we report a simple model framework for the intensity of intracellular infection that links the quasi-stationary distribution of bacteria to bacterial and cellular demography. This enables us to reject the hypothesis that the skewed distribution is generated by intrinsic cellular heterogeneities, and to derive specific predictions on the within-cell dynamics of Salmonella division and host-cell lysis. For within-cell pathogens in general, we show that within-cell dynamics have implications across pathogen dynamics, evolution, and control, and we develop novel generic guidelines for the design of antibacterial combination therapies and the management of antibiotic resistance.
Intracellular Demography and the Dynamics of Salmonella enterica Infections  [PDF]
Sam P Brown equal contributor ,Stephen J Cornell equal contributor,Mark Sheppard,Andrew J Grant,Duncan J Maskell,Bryan T Grenfell,Pietro Mastroeni
PLOS Biology , 2006, DOI: 10.1371/journal.pbio.0040349
Abstract: An understanding of within-host dynamics of pathogen interactions with eukaryotic cells can shape the development of effective preventive measures and drug regimes. Such investigations have been hampered by the difficulty of identifying and observing directly, within live tissues, the multiple key variables that underlay infection processes. Fluorescence microscopy data on intracellular distributions of Salmonella enterica serovar Typhimurium (S. Typhimurium) show that, while the number of infected cells increases with time, the distribution of bacteria between cells is stationary (though highly skewed). Here, we report a simple model framework for the intensity of intracellular infection that links the quasi-stationary distribution of bacteria to bacterial and cellular demography. This enables us to reject the hypothesis that the skewed distribution is generated by intrinsic cellular heterogeneities, and to derive specific predictions on the within-cell dynamics of Salmonella division and host-cell lysis. For within-cell pathogens in general, we show that within-cell dynamics have implications across pathogen dynamics, evolution, and control, and we develop novel generic guidelines for the design of antibacterial combination therapies and the management of antibiotic resistance.
Role of Tip60 tumor suppressor in DNA repair pathway
ZhiJian Liu,YingLi Sun
Chinese Science Bulletin , 2011, DOI: 10.1007/s11434-011-4433-z
Abstract: To prevent the damage caused by DNA strand breaks, eukaryotic cells have evolved a series of highly conserved DNA repair mechanisms. The ubiquitously expressed acetyltransferase, Tip60, plays a central role in ATM (ataxia-telangiectasia mutated) activation which is involved in DNA repair. Recent work uncovered a new mechanism of ATM activation mediated by Tip60 and demonstrated that histone methylation, specifically, trimethylation of histone H3, is a key factor in the process. Here, we review the current understanding of how Tip60 is activated and how it activates ATM in response to DNA damage.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.