oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Forest restoration, biodiversity and ecosystem functioning
Raf Aerts, Olivier Honnay
BMC Ecology , 2011, DOI: 10.1186/1472-6785-11-29
Abstract: Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective.Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem.The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.Globally, forests cover nearly
Inhibition of nitrification in soil by metal diethyldithiocarbamates
AArora,Bijay Singh,Dhiraj Sud,TSrivastava,CLArora,
A. Aror
,Bijay Singh,Dhiraj Su,T.Srivastav,C. L. Arora

环境科学学报(英文版) , 2003,
Abstract: Nitrification acts as a key process in determining fertilizer use efficiency by crops as well as nitrogen losses from soils. Metal dithiocarbamates in addition to their pesticidal properties can also inhibit biological oxidation of ammonium(nitrification) in soil. Metal M = V(III), Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II) and Co(II)] diethyldithiocarbamates (DEDTC) were synthesized by the reaction of sodium diethyldithiocarbamate with metal chloride in dichloromethane/water mixture. These metal diethyldithiocarbamates were screened for their ability to inhibit nitrification at different concentrations( 10 microg/g soil, 50 microg/g soil and 100 microg/g soil). With increasing concentration of the complex, capacity to retard nitrification increased but the extent of increase varied for different metals. At 100 microg/g soil, different complexes showed nitrification inhibition from 22.36% to 46.45% . Among the diethyldithiocarbamates tested, Zn(DEDTC)2 proved to be the most effective nitrification inhibitor at 100 microg/g soil. Manganese, iron and chromium diethyldithiocarbamates also proved to be effective nitrification inhibitors than the others at 100 microg/g soil. The order of percent nitrification inhibition in soil by metal diethyldithiocarbamates was: Zn(II) > Mn(II) > Fe(III) > Cr(III) > V(III) > Co(II) > Ni(II) > Cu(II).
Bioturbation, ecosystem functioning and community structure
C. L. Biles,D. M. Paterson,R. B. Ford,M. Solan
Hydrology and Earth System Sciences (HESS) & Discussions (HESSD) , 2002,
Abstract: The effect of community structure on the functioning of the ecosystem is an important issue in ecology due to continuing global species loss. The influence of infaunal community structure on the functioning of marine systems is proposed here to act primarily through bioturbation of the sediment. Nutrient concentration in the water column, generated by release from the sediment, was used as a measure of ecosystem functioning. In situ and laboratory experiments showed a significant difference in nutrient concentrations with different species treatments. Bioturbation profiles showing the incorporation of tracer particles also differed between communities with different dominant species. The behavioural differences between infaunal species, generating different modes and rates of bioturbation, are therefore proposed to influence nutrient release. The presence and quantity of bioturbating infauna also influenced the amount of sediment suspended in the water column. The increase in surface area available for microbial activity may generate an increase in nutrient cycling. Abiotic influences on sediment structure, such as flow, may have a similar effect on nutrient concentration. Annular flumes used in both laboratory and in situ experiments to generate flow conditions produced a significant increase in ammonia (NH4-N) production in macrofaunal treatments. Flow may influence the behaviour of macrofaunal species, causing changes in NH4-N production through modifying bioturbation of the sediment. Keywords: bioturbation, community structure, ccosystem functioning, estuaries, flow, infauna
The Principle of Optimal Biodiversity and Ecosystem Functioning
International Journal of Ecosystem , 2012, DOI: 10.5923/j.ije.20120204.06
Abstract: We propose the principle of optimal diversity of biosystems. According to this principle, the optimal values of inner diversity of biosystems correspond to their maximum viability (minimum extinction probability). We have investigated a mathematical model of a two-level “population-community” system in a fluctuating environment. The subsystems of the lower level are interpreted as populations while those of the upper level are interpreted as a community of one trophic level made up of these populations. The optimality criteria correspond to the maximum effectiveness of resource utilization by the biosystems, which is possible to consider as an index of ecosystem functioning. Оptimal values of diversity depend on the intensity of resource flow and the instability of the environment. optimal species diversity increases in more stable and “rich” environments, while optimal intrapopulation diversity decreases in more stable environments and is independent of the intensity of resource flow. These opposite reactions allow us to make an assumption of the different roles of intrapopulation diversity and species diversity in a fluctuating environment: intrapopulation diversity is the basis of adaptation to environmental instability, while species diversity enables a community to use resources to the maximum and effectively.In general, the results of our modelling agree with empirical biodiversity patterns, giving us grounds to propose the principle of optimal biodiversity as a working hypothesis complementary to other ideas about interrelation between biodiversity and ecological functioning.
Functional Diversity: An Important Measure of Ecosystem Functioning  [PDF]
Madhurankhi Goswami, Purnita Bhattacharyya, Indranil Mukherjee, Prosun Tribedi
Advances in Microbiology (AiM) , 2017, DOI: 10.4236/aim.2017.71007
Abstract: Functional diversity is a component of biodiversity that generally covers the range of functional traits of microorganisms prevailing in an ecosystem. Functional diversity is of high ecological importance because it is capable of influencing several aspects of ecosystem functioning like ecosystem dynamics, stability, nutrient availability, etc. Functional diversity of a community can be measured by functional richness and evenness. Functional richness refers to the number of species inhabiting a particular niche and functional evenness reveals how evenly the species are being distributed. Increase or decrease in functional richness and evenness simultaneously increases and decreases the functional diversity respectively. Decrease in functional richness and evenness decreases the ecosystem productivity and stability which ultimately decreases functional diversity of the same ecosystem. The effects of functional diversity on the productivity of an ecosystem can be quantitatively explained by the sampling effect model and the niche differentiation model. There are other proposed mechanisms like Niche complementarity and species redundancy relating functional diversity with ecosystem functioning. Rivets and idiosyncratic models relate functional diversity and species richness with ecosystem functioning. By considering the above proposed models on ecosystem functioning, it can be considered that functional diversity is a principal component of ecosystem functioning. So it can be assumed that, knowledge about a particular ecosystem reveals its richness and evenness which enable an individual knowing about the diversity of functional traits prevailing in the ecosystem. Thus, it opens up a new way in understanding and carrying out ecology related studies more efficiently and precisely in ecosystem.
Scenarios for Ecosystem Services: An Overview  [cached]
Stephen R. Carpenter,Elena M. Bennett,Garry D. Peterson
Ecology and Society , 2006,
Abstract: The Millennium Ecosystem Assessment (MA) scenarios address changes in ecosystem services and their implications for human well-being. Ecological changes pose special challenges for long-term thinking, because of the possibility of regime shifts that occur rapidly yet alter the availability of ecosystem services for generations. Moreover, ecological feedbacks can intensify human modification of ecosystems, creating a spiral of poverty and ecosystem degradation. Such complex dynamics were evaluated by a mixture of qualitative and quantitative analyses in the MA scenarios. Collectively, the scenarios explore problems such as the connections of poverty reduction and ecosystem services, and trade-offs among ecosystem services. Several promising approaches are considered by the scenarios, including uses of biodiversity to build resilience of ecosystem services, actively adaptive management, and green technology. Although the scenarios do not prescribe an optimal path, they illuminate the consequences of different policies toward ecosystem services.
Anthropogenic Drivers of Ecosystem Change: an Overview  [cached]
Gerald C. Nelson,Elena Bennett,Asmeret A. Berhe,Kenneth Cassman
Ecology and Society , 2006,
Abstract: This paper provides an overview of what the Millennium Ecosystem Assessment (MA) calls “indirect and direct drivers” of change in ecosystem services at a global level. The MA definition of a driver is any natural or human-induced factor that directly or indirectly causes a change in an ecosystem. A direct driver unequivocally influences ecosystem processes. An indirect driver operates more diffusely by altering one or more direct drivers. Global driving forces are categorized as demographic, economic, sociopolitical, cultural and religious, scientific and technological, and physical and biological. Drivers in all categories other than physical and biological are considered indirect. Important direct drivers include changes in climate, plant nutrient use, land conversion, and diseases and invasive species. This paper does not discuss natural drivers such as climate variability, extreme weather events, or volcanic eruptions.
Genetic Diversity and Ecosystem Functioning in the Face of Multiple Stressors  [PDF]
Fabian Roger, Anna Godhe, Lars Gamfeldt
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0045007
Abstract: Species diversity is important for a range of ecosystem processes and properties, including the resistance to single and multiple stressors. It has been suggested that genetic diversity may play a similar role, but empirical evidence is still relatively scarce. Here, we report the results of a microcosm experiment where four strains of the marine diatom Skeletonema marinoi were grown in monoculture and in mixture under a factorial combination of temperature and salinity stress. The strains differed in their susceptibility to the two stressors and no strain was able to survive both stressors simultaneously. Strong competition between the genotypes resulted in the dominance of one strain under both control and salinity stress conditions. The overall productivity of the mixture, however, was not related to the dominance of this strain, but was instead dependent on the treatment; under control conditions we observed a positive effect of genetic richness, whereas a negative effect was observed in the stress treatments. This suggests that interactions among the strains can be both positive and negative, depending on the abiotic environment. Our results provide additional evidence that the biodiversity-ecosystem functioning relationship is also relevant at the level of genetic diversity.
Spatial Pattern Enhances Ecosystem Functioning in an African Savanna  [PDF]
Robert M. Pringle,Daniel F. Doak,Alison K. Brody,Rudy Jocqué,Todd M. Palmer
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.1000377
Abstract: The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.
Spatial Pattern Enhances Ecosystem Functioning in an African Savanna  [PDF]
Robert M. Pringle ,Daniel F. Doak,Alison K. Brody,Rudy Jocqué,Todd M. Palmer
PLOS Biology , 2010, DOI: 10.1371/journal.pbio.1000377
Abstract: The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.